College of Sciences

The natural and mathematical sciences represent the dual cutting edges of our technological future. UNLV’s College of Sciences is dedicated to making this future real, in the creation of new knowledge through research, and in the application of that knowledge in the classroom and in the development of technological advances to benefit society. These are the guiding principles that bring students, faculty, and staff together. Whether in a small discussion session, in a research laboratory or in the field, College of Sciences graduate students are in an environment in which learning, discovery, and innovation are the common goals. Many students choose a graduate institution based on the reputation of an individual faculty scholar or laboratory group. This is often an excellent approach to find the right match between a new graduate student and a mentor. Still, students who come to UNLV’s College of Sciences without a particular graduate project in mind can count on identifying potential major professors who are receptive to a wide array of interests and backgrounds. Through its active programs of research and teaching, the College of Sciences has established a remarkable foundation of state-of-the-art instrumentation and facilities, providing an ever-growing set of opportunities for students who desire the best from their graduate experiences. Students who graduate with a Master’s or doctoral degree from the College of Sciences fulfill their professional goals, and are competitive for career positions in academia, industry, or in governmental or non-governmental organizations.

Timothy L. Porter, Dean
Javier A. Rodriguez, Associate Dean

Master of Arts in Science

Plan Description

The Master of Arts in Science (M.A.S.) is a non-thesis degree designed to allow students to increase their knowledge base in two different fields of science. Traditional and nontraditional students interested in pursuing or advancing science-related careers will discover a host of new opportunities after completing the program. Secondary science teachers who enroll in the program will be better prepared to face classroom challenges with a broad science background.

This program includes the current graduate faculty, course work and facilities from the departments of Biological Sciences, Chemistry, Geoscience, Mathematical Sciences, and Physics. Any graduate courses offered by these departments can be considered for inclusion in this degree program. In addition, graduate courses from Environmental Studies can be used to satisfy the second field.

For more information about your program, including your graduate program handbook and learning outcomes please visit the Degree Directory.

Plan Admission Requirements

Applications available on the UNLV Graduate College website.

1. All domestic and international applicants must review and follow the Graduate College Admission and Registration Requirements.
2. Three letters of recommendation are required from individuals familiar with the applicant's academic and professional record and potential for advanced study in mathematics and science education.
3. A written statement/letter of intent is required and should include:
 1. summary of research interests
 2. reason(s) for wishing to earn an advanced degree
 3. motivation for attending UNLV
4. Name of two intended department faculty mentors for major and minor
4. Submission of official transcripts of all colleges and universities attended.
5. Copy of current curriculum vitae or resume is required.

Teacher Track

1. A bachelor's degree in any of the sciences, mathematical sciences or secondary education with at least nine upper division (300 level or higher) science or math courses. Must be a licensed educator, have current licensure, a current job offer (ideally in grades 6-12) or degree in education.
2. A minimum grade point average (GPA) of 3.0 for all undergraduate work (based on a 4.00 scale).
3. Satisfactory scores on the General Graduate Record Examination (GRE). Successful applicants should complete the GRE or pass the Praxis I, II.
4. Copy of current teaching licensure, licensure certificate, letter of employment or diploma is required.

General Track

1. Satisfactory scores on the General Graduate Record Examination (GRE).

Students are accepted into a degree program as described in the Graduate Catalog. The faculty and corresponding sub-disciplines and sub-plans within the described programs are subject to change at any time.

Plan Requirements

See Subplan Requirements below.

Subplan 1 Requirements: Teacher Track

Total Credits Required: 33

Course Requirements

Major Field Courses - Credits: 9

Complete 9 credits of advisor-approved coursework in a major field of study from the following list:

- Biology
- Chemistry
- Physics
- Astronomy
- Mathematics
- Statistics
- Geoscience
- Water Resources Management

Minor Field Courses - Credits: 6

Complete 6 credits of advisor-approved coursework in a minor field of study from the following list:

- Biology
- Chemistry
- Physics
- Astronomy
- Mathematics
- Statistics
- Geoscience
- Water Resources Management

Elective Courses - Credits: 15

Complete 15 credits of advisor-approved elective coursework.

Culminating Experience - Credits: 3

Complete either the capstone course or professional paper.

SCI 796 - Professional Paper, Master of Arts in Sciences

Degree Requirements

See Plan Degree Requirements below.

Graduation Requirements

See Plan Graduation Requirements below.

Subplan 2 Requirements: General Track

Total Credits Required: 33

Course Requirements

Major Field Courses - Credits: 9

Complete 9 credits of advisor-approved coursework in a major field of study from the following list:
Complete 9 credits of advisor-approved coursework in a major field of study from the following list:

Biology
Chemistry
Physics
Astronomy
Mathematics
Statistics
Geoscience
Water Resources Management

Minor Field Courses - Credits: 6

Complete 6 credits of advisor-approved coursework in a minor field of study from the following list:

Biology
Chemistry
Physics
Astronomy
Mathematics
Statistics
Geoscience
Water Resources Management

Elective Courses - Credits: 15

Complete 15 credits of advisor-approved elective coursework.

Culminating Experience - Credits: 3

Complete either the capstone course or professional paper.

SCI 796 - Professional Paper, Master of Arts in Sciences

Plan Degree Requirements

1. Complete a total of 33 credits of regular coursework of which 50% must be at 700-level.

2. A student will be placed on academic probation if a minimum 3.00 grade point average is not maintained in all work taken in the degree program.

3. Students accepted into the Master of Arts in Science (MAS) program will be required to take at least 12 credits in one major area of one department and at least 6 credits in one minor field of science, mathematics or statistics from a different department in the College.

4. No more than 9 credits may be earned through independent study.

5. A maximum of 6 credits may be taken outside of the College.

7. All students must develop their degree program with the consent of the faculty mentor from their major department and the student's Graduate Advisory Committee. Student's progress will be assessed annually by the Advisory Committee.

8. Students must successfully complete a professional paper.

Plan Graduation Requirements

1. The student must submit all required forms to the Graduate College and then apply for graduation up to two semesters prior to completing his/her degree requirements.

2. The student must complete a culminating experience.
Master of Art in Sciences Courses

BIOL 666 - Developmental Biology
Credits 3
Developmental biology from the perspectives of evolutionary biology, experimental embryology, cell biology, and genetics, emphasizing triploblastic animals. Mechanisms of patterning, tissue organization, genetic basis of morphological changes, developmental genetics of model species, and extension of these principles to selected problems in current biomedical research.

Prerequisites BIOL 304 and BIOL 445, or permission of instructor.

SCI 620 - Middle School Mathematics Content:
Credits 1-3

Notes Credit repeatable by topic (1-3 credits). Credits may not be applied to College of Sciences graduate program. The maximum number of credits that may be earned is 24.

SCI 630 - Middle School Science Content:
Credits 1-3

Notes May be repeated for credit in different fields/topics (1-3 credits); not available for credit in graduate programs in College of Sciences

SCI 640 - High School Mathematics Content:
Credits 1-3

Notes May be repeated for credit in different fields/topics (1-3 credits); not applicable to graduate programs in College of Sciences.

SCI 650 - High School Science Content:
Credits 1-3
High school science content for teachers. a) Lab Safety, Science Process. b) Content Area Literacy. (c,d) Biology IA, IB (e,f) Earth Science IA, IB (g,h) Chemistry IA, IB (j,k) Physics IA, IB (l) AP Biology (m) AP Chemistry (n) AP Physics (o) other (p,q) Principles of Science, semesters 1,2.

SCI 691 - Life Science for Federal Land Managers
Credits 1-3
For managers in BLM, BIA, Forest Service, Park Service and Fish and Wildlife Service. Meets GS 401 Certification needs. Conceptual understanding of basic biological principles: how information is acquired and evaluated within a scientific framework; modern cell theory; basic principles of molecular biology and genetics; and concepts of microevolution.

SCI 796 - Professional Paper, Master of Arts in Sciences
Credits 1-3
Professional paper preparation, including review of literature or similar research effort. May be repeated to a maximum of three credits. Not permitted for students pursuing the M.S. Thesis option. Prerequisite: Consent of instructor.
Chemistry and Biochemistry

The Department of Chemistry and Biochemistry offers the Ph.D. in Chemistry or Radiochemistry and the M.S. in Chemistry or Biochemistry. Students may supplement their programs with appropriate courses from other science departments, with the approval of their graduate committee. Research may include projects conducted in the Chemistry Department, the Harry Reid Center, the Desert Research Institute, or the Environmental Protection Agency.

For additional information contact: Kathleen A. Robins (Graduate Coordinator) at (702) 895-3510. Web address: can be accessed through the UNLV home page at http://sciences.unlv.edu/Chemistry/prospgrads.htm

David Hatchett, Ph.D., Chair
Kathleen Robins, Ph.D., Graduate Coordinator
Kenneth Czerwinski, Ph.D., Graduate Coordinator - Radiochemistry (PhD)

Chemistry Faculty

Chair

Hatchett, David W. - Full Graduate Faculty
Professor; Environmental & Analytical Chemistry; B.S., California State University, Stanislaus; Ph.D., University of Utah. Rebel since 1999.

Graduate Coordinator

Robins, Kathleen A. - Full Graduate Faculty
Associate Professor; Physical Chemistry; B.S., University of Illinois, Champaign-Urbana; M.A., Ph.D., University of California, Santa Barbara. Rebel since 1991.

Graduate Faculty

Abel-Santos, Ernesto - Full Graduate Faculty
Associate Professor; Biochemistry; B.S., Autonomous University of Santo Domingo, Dominican Republic; Ph.D., Washington University School of Medicine, St. Louis. Rebel since 2006.

Bhowmik, Pradip - Full Graduate Faculty
Professor; Organic & Polymer Chemistry; M.S., University of Dhaka, Bangladesh; M.S., University of Massachusetts at Dartmouth; Ph.D., University of Massachusetts at Amherst. Rebel since 1998.

Czerwinski, Kenneth R. - Full Graduate Faculty
Professor; Radiochemistry; B.A., Knox College; Ph.D., University of California, Berkeley. Rebel since 2003.

Gary, Ronald K. - Full Graduate Faculty
Associate Professor; Biochemistry; B.S., University of California, Irvine; Ph.D., Cornell University. Rebel since 1999.

Heske, Clemens - Full Graduate Faculty
Professor; Materials Chemistry; Diploma, TH Darmstadt, Germany; Ph.D., University of Wurzburg, Germany. Rebel since 2004.

Hodge, Vernon F. - Full Graduate Faculty
Professor; Environmental & Analytical Chemistry; B.A., M.S., San Diego State University; Ph.D., University of California, San Diego. Rebel since 1982.
Kang, Jun Young
Assistant Professor, Organic Chemistry.

Kleiger, Gary - Full Graduate Faculty
Assistant Professor, Biochemistry.

Lee, Dong-Chan - Full Graduate Faculty
Associate Professor; Organic & Materials Chemistry; B.S., M.S., Kyungpook National University, Korea; Ph.D., University of Massachusetts, Lowell. Rebel since 2005.

Naduvalath, Balakrishnan - Full Graduate Faculty
Professor; Physical & Environmental Chemistry; M.S., University of Calicut, India; Ph.D., Indian Institute of Technology, Kanpur. Rebel since 2002.

Orgill, MaryKay - Full Graduate Faculty
Associate Professor; Chemical Education; B.S. Brigham Young University; M.S., Ph.D., Purdue University. Rebel since 2003.

Spangelo, Bryan L. - Full Graduate Faculty
Professor; Biochemistry; B.S., Keene State College; Ph.D., George Washington University Medical Center. Rebel since 1994.

Steinberg, Spencer - Full Graduate Faculty
Professor; Environmental & Organic Chemistry; B.A., Ph.D., University of California, San Diego. Rebel since 1989.

Sung, Hong - Full Graduate Faculty
Associate Professor, Biochemistry.

Tirri, Lawrence J. - Full Graduate Faculty
Assistant Professor; Biochemistry; B.S., Fairleigh Dickinson University; Ph.D., Fordham University. Rebel since 1997.

Zhang, Hui - Full Graduate Faculty
Associate Professor, Biochemistry.

Professors Emeriti

Alsup, William M.
Emeritus Associate Professor; B.S., M.E., Ph.D., University of Wyoming. UNLV Emeritus 1964-1991.

Billingham, Edward J., Jr.
Emeritus Professor; B.S., Lebanon Valley College;

Earl, Boyd
Professor; B.S., University of Idaho; M.S., Ph.D., University of California, Berkeley. UNLV Emeritus 1976.

Emerson, David W.
Emeritus Professor; B.A., Dartmouth College; M.S., Ph.D., University of Michigan. UNLV Emeritus 1981-1998.

Grenda, Stanley C.
Associate Professor; B.S., DePaul University; M.S., University of Arizona; Ph.D., Lehigh University. UNLV Emeritus 1967.

Titus, Richard L.
Emeritus Professor; B.A., DePaul University; Ph.D., Michigan State University. UNLV Emeritus 1967-1997.
Doctor of Philosophy - Chemistry

Plan Description

The Ph.D. degree in chemistry is primarily a research-based program that includes sufficient advanced course work to provide a strong background from which students may pursue forefront research, under the direct guidance of a faculty member, in their chosen areas of interest. The program is designed to develop the professional skills required to function as an independent researcher in chemistry.

For more information about your program, including your graduate program handbook and learning outcomes please visit the Degree Directory.

Plan Admission Requirements

Applications available on the UNLV Graduate College website.

For preferential consideration, please submit materials for Fall semester admission by February 1, and for Spring semester, by October 1.

1. The applicant is required to submit a completed Graduate College application, application fee and official transcripts to the Graduate College with copies submitted to the department.

2. Admission to the Ph.D. degree program in Chemistry requires a B.S. degree or a M.S. degree in Biochemistry, Chemistry, Biology, or a related discipline.

3. A minimum grade point average (GPA) of 3.00, on a 4.0 scale, for all undergraduate or graduate work is required for admission to the program.

4. In addition, the Graduate College application and official transcripts, the Department of Chemistry requires a statement of interest from the applicant. A letter of application should state interests and goals for graduate study. This is a 1-2 page essay describing the applicant's reasons for considering graduate study, goals after completion of the graduate degree, and the applicant's specific areas of interest.

5. The Department of Chemistry requires three letters of recommendation from persons familiar with the academic record of the applicant. Each letter should detail the potential of the applicant for advanced graduate work in Chemistry or Biochemistry.

6. The Department of Chemistry requires scores for GRE, General Record Exam, for admission.

7. All domestic and international applicants must review and follow the Graduate College Admission and Registration Requirements.

Students are accepted into a degree program as described in the Graduate Catalog. The faculty and corresponding sub-disciplines and sub-plans within the described programs are subject to change at any time.

Plan Requirements

See Subplan Requirements below.

Subplan 1 Requirements: Post-Bachelor's Track

Total Credits Required: 60

Course Requirements

Graduate Seminar Course – Credits: 5

CHEM 691 - Graduate Seminar in Chemistry

A minimum of 3 presentations are required.

Coursework Elective Courses – Credits: Minimum of 12

A minimum of 12 credits of advisor-approved coursework electives. These courses may include but are not limited to:

CHEM 710 - Environmental Aquatic Chemistry
CHEM 715 - Environmental Organic Chemistry
CHEM 725 - Advanced Organic Chemistry
CHEM 726 - Organic Synthesis
CHEM 735 - Advanced Physical Chemistry
CHEM 745 - Instrumental Analysis-Inorganic
CHEM 749 - Polymer Chemistry
CEM 750 - Advanced Construction Scheduling
CHEM 770 - Protein Chemistry
CHEM 771 - Metabolism and Energetics
CHEM 772 - Nucleic Acid Chemistry
CHEM 773 - Physical Biochemistry
CHEM 775 - Bioanalytical Environmental Toxicology
CHEM 783 - Spectral Interpretation
CHEM 793 - Special Topics

Research Elective Courses – Credits: 31

Complete 31 credits of advisor-approved research electives. These courses may include but are not limited to:

CHEM 792 - Research Seminar
CHEM 795 - Independent Study
CHEM 796 - Dissertation Prospectus
CHEM 797 - Directed Research

Dissertation – Credits: 12

CHEM 799 - Dissertation

Degree Requirements

1. Doctoral students in Chemistry are required to complete a minimum of 60 credit hours beyond the baccalaureate.
2. All students are required to maintain a minimum a 3.00 grade point average in all graduate-level courses. Two grades of B- are permitted in the degree program as long as the GPA remains at or above 3.00. One grade of C+ or lower will result in academic probation even if the overall GPA is above 3.0. Two grades of C+ or lower will result in automatic suspension or separation from the program.
3. All students must meet with their advisory committee on a yearly basis, and all students must complete an annual evaluation form.
4. A dissertation advisor must be chosen by the end of the first semester, and the Doctoral Advisory Committee must be appointed prior to the end of the second semester. An approved graduate degree program must be filed prior to the beginning of the third semester of enrollment. All students must meet these deadlines; failure to do so will result in academic probation. Failure of a student on academic probation to meet these requirements within the next semester could result in separation from the program.
5. The Doctoral Advisory Committee must consist of the faculty advisor (chair), chemistry graduate faculty in the discipline of study, one additional chemistry graduate faculty member, and one graduate-college representative from outside the department. Failure to identify an advisor and form this committee will result in the student being placed on academic probation. The use of committee members external to UNLV is allowed with approval from the examination committee. External members without graduate faculty status at UNLV will be non-voting members of the Ph.D. examination committee.
6. All students are required to schedule an interview with the advisor either before or during the first semester of study. If the student does not select an advisor, the Graduate Coordinator will assign a temporary advisor. The purpose of the initial interview is to develop a plan of course work for the first year.
7. All students are required to schedule a diagnostic interview with the Doctoral Advisory Committee before the end of the 2nd semester. The purpose of the interview is to develop a list of recommended courses and design the student’s degree program, which must be submitted prior to completing 16 credits of course work toward the degree.
8. All students must prepare a dissertation proposal for a Proposal Defense Examination. The student should register for the Dissertation Prospectus course. This examination must be completed prior to the end of the fourth semester. To remain in good standing students are required to develop and defend a dissertation prospectus no later than the fourth semester of enrollment. If a student does not defend a dissertation prospectus they will be placed
on academic probation. The Proposal Defense Examination focuses on the dissertation proposal and the student's ability to perform the research. It includes a formal oral presentation of the student's dissertation proposal, research to date, and questions by the dissertation advisory committee on the dissertation topic. The Proposal Defense Examination is to be taken prior to the Comprehensive Examination.

9. Advancement to Candidacy. Students will advance to candidacy if the Comprehensive Examination is passed and the enrolled coursework is successfully completed based on the evaluation of the students Doctoral Advisory Committee. The comprehensive exam will consist of written and oral components as defined by the Ph.D. Examination Committee. Satisfactory performance on the Comprehensive Examination requires that Ph.D. students have a basic knowledge of the discipline of study. It also requires the student to follow the guidelines established for each discipline (i.e., Biochemistry, Physical Chemistry, Analytical Chemistry, Inorganic Chemistry and Organic Chemistry). The student's Doctoral Advisory Committee or the faculty from the discipline of study will determine the format and content of both the written and oral exams.

10. The Ph.D. Examination Committee will determine if the student passes the Comprehensive Examination. If a student fails any part of the Comprehensive Examination, the Ph.D Examination Committee will determine if the student is allowed to retake the portion of the comprehensive exam that is not passed.

1. Students who fail to pass any part of the Comprehensive Examination or Proposal Defense on the first attempt must successfully complete a second attempt (as specified by the Ph.D. Examination Committee) within the next six months to remain in the program.

2. Failure to advance to candidacy by the end of the sixth semester of enrollment will result in the student being placed on academic probation. Failure to advance to candidacy by the end of the seventh semester will result in the student being separated from the program.

3. Students who enter the program with a baccalaureate degree and who fail the second examination may be allowed to continue as a Master of Science student with the consent of the Doctoral Advisory Committee.

4. A student who has successfully passed both the Proposal Defense and Comprehensive Examinations will advance to candidacy for the Ph.D. degree.

5. After advancement, subsequent years of study will be required for the graduate student to complete their degree. The duration of this period will depend on the success of the research project as defined by the Doctoral Advisory Committee.

6. Completed coursework will only be counted towards the graduation requirements of this program for eight years if the student completed a baccalaureate degree. It is recommended that students publish at least one research-based manuscript in a peer-reviewed journal prior to graduation.

7. Satisfactory performance on the final examination will consist of the presentation and defense of the dissertation research. The defense will consist of an oral presentation open to the public, a short period of questions from the public, a closed session of questions from the Doctoral Advisory Committee, and a closed deliberation and vote by just the Doctoral Advisory Committee members. Any graduate faculty member may attend the
closed session of questions of the defense.

11. It is expected that each student be a teaching assistant for a minimum of two courses prior to graduation. It is also expected that each student publish research-based manuscripts in peer-reviewed journals.

Graduation Requirements

See Plan Degree Requirements below.

Subplan 2 Requirements: Post-Master's Track

Total Credits Required: 30

Course Requirements

Graduate Seminar Course – Credits: 5
CHEM 791 - Graduate Seminar
A minimum of 3 presentations are required.

Elective Courses – Credits: 13
Complete 13 credits of advisor-approved electives. These courses may include but are not limited to:

CHEM 710 - Environmental Aquatic Chemistry
CHEM 715 - Environmental Organic Chemistry
CHEM 725 - Advanced Organic Chemistry
CHEM 726 - Organic Synthesis
CHEM 735 - Advanced Physical Chemistry
CHEM 745 - Instrumental Analysis-Inorganic
CHEM 749 - Polymer Chemistry
CEM 750 - Advanced Construction Scheduling
CHEM 770 - Protein Chemistry
CHEM 771 - Metabolism and Energetics
CHEM 772 - Nucleic Acid Chemistry
CHEM 773 - Physical Biochemistry
CHEM 775 - Bioanalytical Environmental Toxicology
CHEM 783 - Spectral Interpretation
CHEM 793 - Special Topics

Dissertation – Credits: 12
CHEM 799 - Dissertation

Degree Requirements

1. Doctoral students entering the Ph.D. program with an approved M.S. degree in Chemistry or a closely related discipline, are required to complete a minimum of 30 credit hours in the Ph.D. program at UNLV comprised of courses at the 700-level.

2. All students are required to maintain a minimum a 3.00 grade point average in all graduate-level courses. Two grades of B- are permitted in the degree program as long as the GPA remains at or above 3.00. One grade of C+ or lower will result in academic probation even if the overall GPA is above 3.0. Two grades of C+ or lower will result in automatic suspension or separation from the program.

3. All students must meet with their advisory committee on a yearly basis, and all students must complete an annual evaluation form.

4. A dissertation advisor must be chosen by the end of the first semester, and the Doctoral Advisory Committee must be appointed prior to the end of the second semester. An approved graduate degree program must be filed prior to the beginning of the third semester of enrollment. All students must meet these deadlines; failure to do so will result in academic probation. Failure of a student on academic probation to meet these requirements within the next semester could result in separation from the program.

5. The Doctoral Advisory Committee must consist of the faculty advisor (chair), chemistry graduate faculty in the discipline of study, one additional chemistry graduate faculty member, and one graduate-college representative from outside the department. Failure to identify an advisor and form this committee will result in the student being placed on academic probation. The use of committee members external to UNLV is allowed with approval from the examination committee. External members without graduate faculty status at UNLV will be non-voting members of the Ph.D. examination committee.

6. All students are required to schedule an interview with the advisor either before or during the first semester of study. If the
student does not select an advisor, the Graduate Coordinator will assign a temporary advisor. The purpose of the initial interview is to develop a plan of course work for the first year.

7. All students are required to schedule a diagnostic interview with the Doctoral Advisory Committee before the end of the 2nd semester. The purpose of the interview is to develop a list of recommended courses and design the student's degree program, which must be submitted prior to completing 16 credits of course work toward the degree.

8. All students must prepare a dissertation proposal for a Proposal Defense Examination. The student should register for the Dissertation Prospectus course. This examination must be completed prior to the end of the fourth semester. To remain in good standing students are required to develop and defend a dissertation prospectus no later than the fourth semester of enrollment. If a student does not defend a dissertation prospectus they will be placed on academic probation. The Proposal Defense Examination focuses on the dissertation proposal and the student's ability to perform the research. It includes a formal oral presentation of the student's dissertation proposal, research to date, and questions by the dissertation advisory committee on the dissertation topic. The Proposal Defense Examination is to be taken prior to the Comprehensive Examination.

9. Advancement to Candidacy. Students will advance to candidacy if the Comprehensive Examination is passed and the enrolled coursework is successfully completed based on the evaluation of the students Doctoral Advisory Committee. The comprehensive exam will consist of written and oral components as defined by the Ph.D. Examination Committee. Satisfactory performance on the Comprehensive Examination requires that Ph.D. students have a basic knowledge of the discipline of study. It also requires the student to follow the guidelines established for each discipline (i.e., Biochemistry, Physical Chemistry, Analytical Chemistry, Inorganic Chemistry and Organic Chemistry). The student's Doctoral Advisory Committee or the faculty from the discipline of study will determine the format and content of both the written and oral exams.

10. The Ph.D. Examination Committee will determine if the student passes the Comprehensive Examination. If a student fails any part of the Comprehensive Examination, the Ph.D Examination Committee will determine if the student is allowed to retake the portion of the comprehensive exam that is not passed.

1. Students who fail to pass any part of the Comprehensive Examination or Proposal Defense on the first attempt must successfully complete a second attempt (as specified by the Ph.D. Examination Committee) within the next six months to remain in the program.

2. Failure to advance to candidacy by the end of the sixth semester of enrollment will result in the student being placed on academic probation. Failure to advance to candidacy by the end of the seventh semester will result in the student being separated from the program.

3. Students who entered the program with a master's degree who fail the examination a second time will be separated from the program.

4. A student who has successfully passed both the Proposal Defense and Comprehensive Examinations will advance to candidacy for the Ph.D. degree.

5. After advancement, subsequent years of study will be required for the graduate student to complete their degree. The duration of this period will depend on the success of the research project as defined by the Doctoral Advisory Committee.

6. Completed coursework will only be counted towards the graduation
requirements of this program for six years. It is recommended that students publish at least one research-based manuscript in a peer-reviewed journal prior to graduation.

7. Satisfactory performance on the final examination will consist of the presentation and defense of the dissertation research. The defense will consist of an oral presentation open to the public, a short period of questions from the public, a closed session of questions from the Doctoral Advisory Committee, and a closed deliberation and vote by just the Doctoral Advisory Committee members. Any graduate faculty member may attend the closed session of questions of the defense.

11. It is expected that each student be a teaching assistant for a minimum of two courses prior to graduation. It is also expected that each student publish research-based manuscripts in peer-reviewed journals.

Graduation Requirements

See Plan Graduation Requirements below.

Plan Graduation Requirements

1. The student must submit all required forms to the Graduate College and then apply for graduation up to two semesters prior to completing his/her degree requirements.

2. The student must submit and successfully defend his/her dissertation by the posted deadline. The defense must be advertised and is open to the public. The student must submit his/her approved, properly formatted hard-copy document to the Graduate College, and submit the approved electronic version to ProQuest by the posted deadline.

Doctor of Philosophy - Radiochemistry

Plan Description

The Radiochemistry Ph.D. Program is a student-driven research intensive program stressing fundamental aspects of radiochemistry science. It was established by the Departments of Health Physics and Chemistry and includes participants from the Harry Reid Center, Nuclear Science and Technology Group. The program is administered by the UNLV Graduate College. The Ph.D. program requires 60 credits of research and courses beyond the baccalaureate degree. Credit is required for four courses in nuclear chemistry, radiochemistry, detectors, and laboratory. The remaining courses are based on the area of interest of the student and include laboratory research. Students are obliged to maintain a B average and show progress in their research. The curriculum and research provides a comprehensive and interdisciplinary examination of topics and experiences necessary to produce graduates who are ready to secure employment and participate in radiochemistry research.

For more information about your program, including your graduate program handbook and learning outcomes please visit the Degree Directory.

Plan Admission Requirements

Applications available on the UNLV Graduate College website.

Admission to the program is granted annually for the fall semester. Applicants should refer to both the radiochemistry and Graduate College websites for specific application deadlines.

Admission requirements include:

1. Completed Graduate College Application including applicable fees.

2. An earned undergraduate degree from a regionally accredited institution in the field of chemistry, radiochemistry, health physics, engineering or other related field with a
minimum GPA of 3.0. Applicants with a GPA below 3.0, but not less than 2.75, may be admitted on a provisional basis.

3. Three letters of recommendation including one letter from an individual who can evaluate the applicant’s ability to conduct graduate work at the PhD level. A second letter of recommendation must come from someone who has supervised the candidate in a work setting.

4. A current resume.

5. A statement of purpose explaining the applicant’s career goals and why the doctorate would enhance the likelihood of achieving those goals. The statement should also explain why the applicant believes that he or she is qualified to conduct academic work at the advance graduate level. Finally, the statement should address the specific area of specialization the student would like to emphasize.

6. A score ranking in the 50th percentile or higher in the verbal and quantitative sections of the Graduate Record Exam (GRE).

7. Students meeting all of the above admission requirements may be asked to meet with the admission committee for a personal interview.

8. All domestic and international applicants must review and follow the Graduate College Admission and Registration Requirements.

Students are accepted into a degree program as described in the Graduate Catalog. The faculty and corresponding sub-disciplines and sub-plans within the described programs are subject to change at any time.

Plan Requirements

Total Credits Required: 60

Course Requirements

Core Courses – Credits: 12

RDCH 701 - Applied Nuclear Physics
RDCH 702 - Radiochemistry
HPS 602 - Radiation Detection

HPS 603 - Radiation Physics and Instrumentation Laboratory

Electives – Credits: 30-36

Complete 30-36 credits of advisor-approved electives.

Dissertation – Credits: 12-18

CHEM 799 - Dissertation

Degree Requirements

1. Students must complete a minimum of 60 credit hours with a minimum GPA of 3.00.

2. RDCH 702 must be completed before enrolling in RDCH 710.

3. Students enrolled in the Radiochemistry Ph.D. program are required to maintain satisfactory progress toward the degree as determined by the student's academic advisor and advisory committee. To maintain satisfactory progress in the Radiochemistry Ph.D. program, a student must:
 a. Maintain a cumulative grade point average of 3.0 or above each semester enrolled.
 b. Receive a grade of B (3.0) or above in all core Radiochemistry courses. If less than a B is earned in any given course, it may be repeated. The student must be in good standing to repeat a course, and courses may not be repeated more than one time.
 c. Schedule and take the oral qualifying exam within 1.5 years of satisfactorily completing the core Radiochemistry courses.
 d. Pass the dissertation prospectus defense within 3 years of entering the Radiochemistry Ph.D. program.
 e. Participate in Radiochemistry seminar. Students are required to participate in the weekly Radiochemistry seminar each semester they are in residence at UNLV. Students may only be
exempted from this requirement due to scheduling conflicts, with the prior approval of their academic advisor.

4. Failure to make satisfactory progress as determined by the student's academic advisor and/or advisory committee may include: failure to complete six credits per calendar year toward the degree program; unsatisfactory grades (including Incompletes, grades below a B, or Withdrawals); failure to consult with the academic advisor when requested; failure to establish a graduate advisory committee; failure to establish the groundwork for an acceptable dissertation; failure of oral qualifying examination; failure to pass prospectus defense; or, continuous or willful neglect and/or intentional or continuous disregard for laboratory safety procedures.

5. To advance to candidacy, students are required to pass an oral exam on their research and an outside topic related to radiochemistry.

6. Complete all requirements for the Ph.D. degree within eight years, or six years if entering the program with a master's degree. If these requirements are not met, the program may place the student on academic probation or drop him/her from the Ph.D. program.

7. In consultation with his/her advisor, a student will organize a dissertation committee. The graduate advisory committee is responsible for guiding students through the Radiochemistry Ph.D. program. Upon entering the program, the Radiochemistry Graduate Coordinator will serve as academic advisor to all students until individual advisory committees have been established. The responsibility of establishing an advisory committee falls upon the students. By the end of the first year in the program, students must select an advisory committee chair who will also serve as the student's academic advisor from that point forward. By the end of the second year in the program, students must select the remaining members of the graduate advisory committee.

8. The graduate advisory committee consists of at least four graduate faculty members as follows:
 a. Advisory Committee Chair - must have full graduate faculty status in Radiochemistry.
 b. Graduate College Representative - must have full graduate faculty status at UNLV in a program outside of Radiochemistry and the host department. Faculty with status in Radiochemistry may not serve as the GC Rep.
 c. Committee Member - must have affiliate, associate or full graduate faculty status in Radiochemistry.
 d. Committee Member - must have affiliate, associate or full graduate faculty status in Radiochemistry.

9. The oral qualifying exam must be taken within 1.5 years of successfully completing the radiochemistry core courses listed above. The exam is designed to test students on the fundamental science underlying radiochemistry, including all content covered in the core courses. In addition, students are tested on their depth of knowledge in their area of research specialization.
 a. The oral qualifying exam is held in closed session and is given by the qualifying examination committee. This committee is made up of a minimum of three members, the advisory committee chair, another member of the UNLV radiochemistry faculty, and an affiliate, associate or full graduate faculty status member in Radiochemistry. All members of the qualifying examination committee must be present during the oral qualifying exam. Additional members of the student's advisory committee may participate on the qualifying examination at the discretion of the
academic advisor, but are not required to be present.

2. For the exam, students are responsible for preparing two presentations which are presented to the qualifying examination committee. The first presentation is an overview of the student's proposed research, including relevant literature, a proposed research plan and summary/results of current research. This presentation may serve as the basis for the Prospectus Defense as well. The second presentation summarizes a recent published scientific article on a topic not directly related to the candidate's proposed dissertation research. The article must be approved by the student's advisor prior to the exam.

3. Students who do not pass the exam may repeat the exam one time within 6 months, but no sooner than 3 months from the first attempt. Students who do not pass the oral qualifying exam on the second attempt will be severed from the program.

4. Students must schedule and take the oral qualifying exam within 1.5 years of satisfactorily completing the core Radiochemistry courses.

2. Students are required to participate in the weekly Radiochemistry seminar each semester they are in residence at UNLV. Students may only be exempted from this requirement due to scheduling conflicts, with the prior approval of their academic advisor.

3. Students must prepare and successfully defend their dissertation prospectus prior to the completion of their sixth semester. The prospectus will cover a review of the relevant literature, a statement of the problem or hypothesis to be examined and a research plan for the project. The prospectus will be defended to the student's advisory committee and will be open to the general research community. All members of the student's advisory committee must be present at the student's prospectus defense.

4. Students are expected to write a dissertation demonstrating both knowledge of a specific topic and the ability to conduct high quality original research. The dissertation must be accepted by the student's advisory committee prior to the completion of the degree program. Upon completion of the dissertation, the dissertation must be defended to the student's advisory committee in a public dissertation defense.

5. To advance to candidacy, students are required to pass the oral qualifying exam and successfully defend their dissertation prospectus. Upon successful completion of the prospectus defense, students shall be promoted to Ph.D. candidate the term following the defense.

6. The dissertation must be written in collaboration with the student's academic advisor and advisory committee. The dissertation must be accepted by the student's advisory committee prior to the completion of the degree program. Students must enroll in six credits of dissertation work each semester they are working on the dissertation and the minimum number of dissertation credits required for graduation is twelve.

Plan Graduation Requirements

1. The student must submit all required forms to the Graduate College and then apply for graduation up to two semesters prior to completing his/her degree requirements.

2. The student must submit and successfully defend his/her dissertation by the posted deadline. The defense must be advertised and is open to the public.

3. The student must submit his/her approved, properly formatted hard-copy dissertation to the Graduate College, and submit the approved electronic version to ProQuest by the posted deadline.
Master of Science - Biochemistry

Plan Description

Our graduate programs offer exceptional research opportunities for advanced training in a wide variety of chemistry related disciplines including Organic, Physical, Analytical, Computational, Materials, Biochemistry, and Chemical Education. The graduate student to faculty ratio in the department is nearly one-to-one. Consequently, our diverse student body receives a high level of individualized interaction with excellent faculty through customized research projects, specialized course work, professional development, and graduate seminars. In addition, many of our research programs offer exciting interdisciplinary collaborations with local scientists, as well as with scientists nationally and internationally.

For more information about your program, including your graduate program handbook and learning outcomes please visit the Degree Directory.

Plan Admission Requirements

Applications available on the UNLV Graduate College website.

Admission to the program requires an undergraduate degree in chemistry, chemical engineering, biology, biochemistry or a related discipline, with a cumulative GPA of 2.75, or of 3.00 for the last two years of undergraduate work. An application must be submitted to the Graduate College, with official transcripts of all college-level work. Two letters of recommendation from individuals able to assess the applicant's potential as a graduate student should be sent directly to the department along with an additional set of transcripts. The GRE General Aptitude Test results must be received by the department prior to regular admission.

Individuals with apparent deficiencies in their undergraduate background may be required to enroll in selected courses in addition to those listed in the following section to satisfy M.S. degree requirements.

All domestic and international applicants must review and follow the Graduate College Admission and Registration Requirements.

Students are accepted into a degree program as described in the Graduate Catalog. The faculty and corresponding sub-disciplines and sub-plans within the described programs are subject to change at any time.

Plan Requirements

Total Credits Required: 30

Course Requirements

Graduate Seminar Course – Credits: 2
CHEM 791 - Graduate Seminar

Elective Courses – Credits: 18

Complete 18 credits of advisor-approved coursework electives. These courses may include but are not limited to:

CHEM 770 - Protein Chemistry
CHEM 771 - Metabolism and Energetics
CHEM 772 - Nucleic Acid Chemistry
CHEM 773 - Physical Biochemistry
CHEM 672 - Biochemistry Laboratory
BIOL 701 - Ethics in Scientific Research

Independent Study – Credits: 4
CHEM 795 - Independent Study

Thesis – Credits: 6
CHEM 798 - Thesis

Degree Requirements

1. Students must complete a minimum of 30 credit hours with a minimum GPA of 3.00.
2. No grade lower than C is acceptable, and only one grade below B- is permitted.
3. At least 12 credits of electives must be in courses at the 700-level.
4. In consultation with his/her advisor, a student will organize a thesis committee of at least three departmental members. In addition, a fourth member from outside the department, known as the Graduate College Representative, must be appointed. An additional committee member may be added at the student and department's discretion. Please see Graduate College policy for committee appointment guidelines.

5. Each student is required to present a departmental seminar on the student's research prior to graduation. This requirement is in addition to the two credits of Graduate Seminar. Students are expected to attend weekly departmental seminars.

6. Each student is required to meet at least once per semester with the student's examination committee. At the meeting in the semester prior to the expected term of graduation, the student will be asked to make a detailed presentation on research progress. The committee will then make recommendations to be addressed by the student during the remainder of the student's research program, in writing the thesis, and in the final examination. The committee may request another meeting prior to the final exam if deemed necessary.

7. It is expected that each student be a teaching assistant for a minimum of two courses prior to graduation. It is also expected that each student publish at least one research-based manuscript in a peer-reviewed journal.

Plan Graduation Requirements

1. The student must submit all required forms to the Graduate College and then apply for graduation up to two semesters prior to completing his/her degree requirements.

2. The student must submit and successfully defend his/her thesis by the posted deadline. The defense must be advertised and is open to the public.

3. The student must submit his/her approved, properly formatted hard-copy thesis to the Graduate College, and submit the approved electronic version to ProQuest by the posted deadline.
Master of Science - Chemistry

Plan Description

Our graduate programs offer exceptional research opportunities for advanced training in a wide variety of chemistry related disciplines including Organic, Physical, Analytical, Computational, Materials, Biochemistry, and Chemical Education. The graduate student to faculty ratio in the department is nearly one-to-one. Consequently, our diverse student body receives a high level of individualized interaction with excellent faculty through customized research projects, specialized course work, professional development, and graduate seminars. In addition, many of our research programs offer exciting interdisciplinary collaborations with local scientists, as well as with scientists nationally and internationally.

For more information about your program, including your graduate program handbook and learning outcomes, please visit the Degree Directory.

Plan Admission Requirements

Applications available on the UNLV Graduate College website.

Admission to the program requires an undergraduate degree in chemistry, chemical engineering, biology, biochemistry or a related discipline, with a cumulative GPA of 2.75, or of 3.00 for the last two years of undergraduate work. An application must be submitted to the Graduate College, with official transcripts of all college-level work. Two letters of recommendation from individuals able to assess the applicant's potential as a graduate student should be sent directly to the department along with an additional set of transcripts. The GRE General Aptitude Test results must be received by the department prior to regular admission.

Individuals with apparent deficiencies in their undergraduate background may be required to enroll in selected courses in addition to those listed in the following section to satisfy M.S. degree requirements.

All domestic and international applicants must review and follow the Graduate College Admission and Registration Requirements.

Students are accepted into a degree program as described in the Graduate Catalog. The faculty and corresponding sub-disciplines and sub-plans within the described programs are subject to change at any time.

Plan Requirements

Total Credits Required: 30

Course Requirements

Graduate Seminar Course – Credits: 2
CHEM 791 - Graduate Seminar

Elective Courses – Credits: 18
Complete 18 credits of elective coursework.

Independent Study – Credits: 4
CHEM 795 - Independent Study

Thesis – Credits: 6
CHEM 798 - Thesis

Degree Requirements

1. Students must complete a minimum of 30 credit hours with a minimum GPA of 3.00.
2. No grade lower than C is acceptable, and only one grade below B- is permitted.
3. At least 12 credits of electives must be in courses at the 700-level.
4. In consultation with his/her advisor, a student will organize a thesis committee of at least three departmental members. In addition, a fourth member from outside the department, known as the Graduate College Representative, must be appointed. An additional committee member may be added at the student and department's discretion.
Please see Graduate College policy for committee appointment guidelines.

5. Research and course work specializations are available in analytical chemistry, biochemistry, organic chemistry, and physical chemistry. The individual student's program of course work must be selected in consultation with and approved by the student's committee, and may include courses from selected disciplines other than chemistry, such as biology, physics, civil and environmental engineering, or water resources management.

6. Each student is required to present a departmental seminar on the student's research prior to graduation. This requirement is in addition to the two credits of Graduate Seminar. Students are expected to attend weekly departmental seminars.

7. Each student is required to meet at least once per semester with the student's examination committee. At the meeting in the semester prior to the expected term of graduation, the student will be asked to make a detailed presentation on research progress. The committee will then make recommendations to be addressed by the student during the remainder of the student's research program, in writing the thesis, and in the final examination. The committee may request another meeting prior to the final exam if deemed necessary.

8. It is expected that each student be a teaching assistant for a minimum of two courses prior to graduation. It is also expected that each student publish at least one research-based manuscript in a peer-reviewed journal.

Plan Graduation Requirements

1. The student must submit all required forms to the Graduate College and then apply for graduation up to two semesters prior to completing his/her degree requirements.

2. The student must submit and successfully defend his/her thesis by the posted deadline. The defense must be advertised and is open to the public.

3. The student must submit his/her approved, properly formatted hard-copy thesis to the Graduate College, and submit the approved electronic version to ProQuest by the posted deadline.
Chemistry Courses

CHEM 602 - Scientific Software for the Microcomputer
Credits 1
Use of computer software for graphing, statistics, structure drawing, information retrieval, word processing, and self-paced learning.
Notes This course is crosslisted with CHEM 402. Credit at the 600-level requires additional work.

CHEM 621 - Physical Chemistry
Credits 3
Thermodynamics, solution behavior, and equilibrium.
Notes This course is crosslisted with CHEM 421. Credit at the 600-level requires additional work.

CHEM 622 - Physical Chemistry II
Credits 3
Kinetic theory, chemical kinetics, electrochemistry, introductory quantum chemistry, and states of matter.
Notes This course is crosslisted with CHEM 422. Credit at the 600-level requires additional work.

CHEM 628 - Quantum Chemistry
Credits 3
Introduction to quantum mechanics and molecular orbital theory as related to bonding, spectra, and reactivity. Includes an introduction to computerized electronic structure calculations.
Notes This course is crosslisted with CHEM 428. Credit at the 600-level requires additional work.

CHEM 631 - Advanced Inorganic Chemistry
Credits 3
Prerequisites CHEM 422 or equivalent.

CHEM 649 - Polymer Chemistry
Credits 3
Synthesis, characterization, morphology, bulk and solution properties of polymers; polymerization mechanisms.
Notes This course is crosslisted with CHEM 449.

CHEM 655 - Instrumental Analysis
Credits 4
Fundamental laws and principles of instrumental determinations, including spectroscopy, spectrophotometry, electrochemical methods, and thermal analysis as main areas of study.
Notes This course is crosslisted with CHEM 455. Credit at the 600-level requires additional work.

CHEM 672 - Biochemistry Laboratory
Credits 2
Introduction to analytical techniques of biochemistry as tools to study cellular components. Techniques may include centrifugation, spectrophotometry, chromatography, and electrophoresis.
Notes This course is crosslisted with CHEM 472. Credit at the 600 level requires additional work. This course offered by another department may also be taken for graduate credit.

CHEM 676 - Advanced Topics in Biochemistry
Credits 3
In depth study of selected advanced topics in biochemistry, cancer biochemistry or other medically-related topics in biochemistry.
Notes May be repeated (different topic) once for a total of 6 credits to be applied toward graduate degree program.
Prerequisites CHEM 475, graduate standing or permission of instructor.

CHEM 678 - Endocrinology
Credits 3
Survey of the structure and function of vertebrate endocrine systems, with emphasis on the biochemical basis of hormone action and the role of cell communication in endocrine physiology.
Same as BIOL 448
Notes This course is crosslisted with CHEM 478. Credit at the 600-level requires additional work.

CHEM 691 - Graduate Seminar in Chemistry
Credits 1
Attendance and participation in seminar presentations and discussions of specialized topics. Includes
student presentations. Students required to enroll for a minimum of two semesters and present a minimum of two presentations.

Notes May be repeated to a maximum of six credits.

Grading S/F

CHEM 710 - Environmental Aquatic Chemistry Credits 3
Study of the chemistry of natural waters, emphasizing chemical speciation and the interaction of aqueous media with soil and air. Considerable attention given to the use and limitations of thermodynamic equilibrium models of chemical speciation.

Prerequisites Graduate standing or consent of instructor.

CHEM 715 - Environmental Organic Chemistry Credits 3
Organic chemistry of natural waters, soils and the atmosphere, emphasizing chemical reactions, sorption, bio-concentration and fate and transport. Use and limitation of thermodynamic and kinetic models and the extrapolation of laboratory data to environmental conditions.

Prerequisites Graduate standing in chemistry or consent of instructor.

CHEM 725 - Advanced Organic Chemistry Credits 3
Advanced study of structures and reactions of organic compounds. Reactive intermediates, reaction mechanism, stereochemistry, and synthesis examined.

Prerequisites CHEM 242 and 421.

CHEM 726 - Organic Synthesis Credits 3
Study of the synthesis of complex organic molecules. Stereochemistry, use of organometallic reagents and chiral auxiliaries stressed, with considerable emphasis on current literature.

Prerequisites CHEM 242, 421

CHEM 728 - Organic Synthesis Laboratory Credits 2
Some reasonably challenging syntheses undertaken to include reactions requiring rigid exclusion of air and moisture. Products characterized by modern spectroscopic methods.

Notes Eight hours laboratory per week.

Prerequisites CHEM 242, 421, 447 or consent of instructor.

CHEM 735 - Advanced Physical Chemistry Credits 3
Statistical and quantum mechanics and their use in calculating thermodynamic properties.

Prerequisites CHEM 421 and 428

CHEM 745 - Instrumental Analysis-Inorganic Credits 3
Theory of modern analytical instrumentation as it pertains to inorganic analysis.

Notes May include atomic emission and absorption, x-ray, radioactivity and mass spectroscopic methods.

CHEM 746 - Instrumental Analysis-Organic Credits 3
Theory of modern analytical instrumentation as it pertains to organic analysis. May include gas chromatography-mass spectrometry, supercritical fluid chromatography, nuclear magnetic resonance, Fourier transform infrared methods and fluorescence techniques.

CHEM 749 - Polymer Chemistry Credits 3
Polymer structure; classification of polymerization reactions, step-growth and chain-growth polymerization reactions; condensation, radical, cationic, and anionic polymerization reactions; physical properties and characterization of polymers.

Prerequisites Consent of instructor.

CHEM 750 - Quality Assurance and Statistics Credits 3
Purpose, theory, and applications of quality assurance/quality control. Experimental design including development of sampling protocols. Statistics relating to the evaluation of data quality covered.

Notes Not a theoretical statistics course.

Prerequisites STA 161 and CHEM 455.

CHEM 752 - Chromatography Credits 3
Theory and applications of chromatography as the basis of analytical separations for inorganic and organic analyses. Separating power, selectivity,
efficiency, and limitations of the various methods discussed.

Prerequisites CHEM 241, 422, and 455.

CHEM 755 - Sample Preparation and Analysis
Credits 3
Collection, preparation, and analysis of gaseous, soil, and water samples using approved standard methods. Techniques used may include gas chromatography, gas chromatographymass spectroscopy, high performance liquid chromatography- atomic absorption spectroscopy, and inductively coupled plasma atomic emission spectroscopy.

Notes One hour lecture and six hours laboratory. Consult instructor(s) prior to enrollment.

Prerequisites Graduate standing in chemistry.

CHEM 760 - Environmental Radiochemistry/Radiation Safety
Credits 3
Practical applications of radiochemistry to topics of current and future concern, such as the temporary and permanent storage of radioactive wastes, nuclear utilities, nuclear medicine and isotope geology. Includes advanced radiochemical techniques and radiation safety training.

Prerequisites CHEM 421 and 422 or equivalent, or consent of instructor.

CHEM 765 - Inorganic Chemistry
Credits 3
Physical approach to inorganic compounds, mainly of the transition elements including bonding, stereochemistry, and electronic properties with use of symmetry and elementary group theory.

Prerequisites CHEM 422

CHEM 770 - Protein Chemistry
Credits 3
Protein structure and function. Enzymology (kinetics, regulation). Survey of techniques used in protein purification and analysis.

Prerequisites CHEM 475 or equivalent.

CHEM 771 - Metabolism and Energetics
Credits 3
Biochemical pathways of carbohydrate, lipid, nucleic acid and amino acid metabolism and the mechanism of mitochondrial ATP synthesis.

Prerequisites CHEM 475

CHEM 772 - Nucleic Acid Chemistry
Credits 3
Chemistry and function of nucleic acids (DNA, RNA) and their analogs.

Prerequisites CHEM 475 or equivalent.

CHEM 773 - Physical Biochemistry
Credits 3
Theory and practice of physical chemistry as applied to the structure, properties, and interactions of biochemical macromolecules. Includes thermodynamics, various types of spectroscopy, electrophoresis, ligand binding, and hydrodynamic methods (covering the theoretical aspects of diffusion, sedimentation, and viscosity).

Prerequisites CHEM 475

CHEM 775 - Bioanalytical Environmental Toxicology
Credits 3

Prerequisites CHEM 475

CHEM 777 - Spectral Interpretation
Credits 3
Spectroscopic data obtained from the techniques of nuclear magnetic resonance (NMR), mass spectrometry (MS), infrared (IR) and ultraviolet-visible (UV-VIS) spectrophotometry used to establish structural features of organic molecules. Emphasizes strategies, interpretation, modern techniques, and problem solving.

Prerequisites Consent of instructor.

CHEM 778 - Spectral Interpretation Laboratory
Credits 1
Identification and characterization of an organic compound using infrared, ultraviolet, mass, and NMR spectrometers. Proton, carbon-13, and two-dimensional NMR spectra used to fully determine the structure.

Corequisite CHEM 783

CHEM 790 - Directed Readings
Credits 1
Directed readings in the primary literature supportive of the dissertation prospectus.

Notes May be repeated, but only three credits are
applied to the academic program. **Prerequisites** Enrollment in the Chemistry or Radiochemistry doctoral program.

CHEM 791 - Graduate Seminar
Credits 1
Attendance and participation in seminar presentations. Includes student presentations. For master's students, enrollment is required. Two presentations are required.
Notes May be repeated for a maximum of five credits.
Grading S/F
Prerequisites Graduate standing in Chemistry or Radiochemistry.

CHEM 792 - Research Seminar
Credits 3
Public defense of a graduate research project in the Ph.D. Program.
Prerequisites Graduate standing in Chemistry or Radiochemistry.

CHEM 793 - Special Topics
Credits 3
Study of a topic of interest from any field of chemistry (for example, analytical chemistry, biochemistry, etc.), at an advanced level. Topic varies each semester. Topic chosen will be published in the class schedule.
Notes May be repeated for credit if classes are in different topics.
Prerequisites Graduate standing in chemistry.

CHEM 795 - Independent Study
Credits 1 – 3
Individual directed study of a topic not covered in other courses.
Notes May be repeated once for credit. May be repeated to a maximum of six credits.
Prerequisites Graduate standing in chemistry and consent of instructor.

CHEM 796 - Dissertation Prospectus
Credits 1
Development of a prospectus and its defense before the Ph.D. examination committee.
Prerequisites Enrollment in the Chemistry or Radiochemistry doctoral program.

CHEM 797 - Directed Research
Credits 1 – 6
Supervised research in the doctoral program. May be repeated for a maximum of twelve credits.
Prerequisites Enrollment in the Chemistry or Radiochemistry doctoral program.

CHEM 798 - Thesis
Credits 3 – 6
Notes May be repeated, but only nine credits applied to the student's program.
Grading S/F grading only.
Prerequisites CHEM 745 or CHEM 746 and consent of instructor.

CHEM 799 - Dissertation
Credits 3 – 6
Research, analysis, and writing toward completion of dissertation and subsequent defense.
Notes May be repeated but a minimum of eighteen credits and a maximum of twenty four credits will be applied toward fulfillment of degree requirements.
Grading S/F grading only.
Prerequisites Graduate standing in Chemistry or Radiochemistry and consent of instructor.

RDCH 701 - Applied Nuclear Physics
Credits 3
Prerequisites General physics, graduate standing in Radiochemistry program.

RDCH 702 - Radiochemistry
Credits 3
Prerequisites Inorganic chemistry, physical chemistry, graduate standing in Radiochemistry program.
RDCH 710 - Actinide Chemistry
Credits 3
Basis for unique chemistry of actinide elements described and related to oxidation-reduction, complexation, orbital interaction, and spectroscopy. Using nuclear properties in understanding actinide chemistry covered. Presentations on exploiting chemical behavior of actinides in separation, nuclear fuel cycle, environmental behavior, and materials. Prerequisites RDCH 702, graduate standing in Radiochemistry program.

RDCH 750 - Radiochemistry Laboratory Research
Credits 3
Experimental laboratory research conducted by the student under supervision. The student supplies research topic and provides suitable literature and background information. Research plan developed in conjunction with instructor. The student obtains experience in performing radiochemical laboratory research. Prerequisites Undergraduate chemistry laboratory experience, graduate standing in the Radiochemistry program.

Geoscience
The Department of Geoscience is an active and enthusiastic department consisting of twenty two full-time faculty, approximately sixty graduate students and one hundred undergraduate majors. The department offers a program of courses, seminars and research opportunities leading to Master of Science and Doctor of Philosophy degrees in Geoscience. The interests of the faculty and students cover a wide range of topics. Active research by faculty and students is ongoing throughout the western United States, as well as in, Canada, Chile, China, Costa Rica, Indonesia, France, Guatemala, Mexico, New Zealand, Panama, Poland, Russia, South Africa, Spain, and Switzerland. The Geoscience curriculum is designed to develop student skills applicable to employment opportunities in a wide array of disciplines in the Geoscience sector.

The department encourages interdisciplinary research. Opportunities for geological and interdisciplinary research may be pursued with organizations near, or on, campus that cooperate with the department including: the Division of Hydrologic Sciences of the Desert Research Institute (DRI), a division of the University and Community College System of Nevada; the Environmental Monitoring and Support Laboratory of the Environmental Protection Agency (EPA); the Department of Energy; and other university departments and schools such as life sciences, chemistry, physics, and engineering.

Students are encouraged to read the general graduate college rules and regulations elsewhere in this catalog and to read the Department of Geoscience Graduate Student Guidelines, which are available on the department’s web site at: http://geoscience.unlv.edu/graduate_program.html. An understanding of these documents is essential for satisfactory progress toward the degree.

Terry Spell, Ph.D., Chair
Matthew Lachniet, Ph.D., Graduate Program Coordinator
Ganqing Jiang, Ph.D., Graduate Admissions Coordinator
Geoscience Faculty

Chair

Spell, Terry - Full Graduate Faculty
Associate Professor; B.S., West Georgia College; M.S., New Mexico Institute of Mining and Technology; Ph.D., State University of New York, Albany. Rebel since 1996.

Graduate Coordinator

Lachniet, Matthew - Full Graduate Faculty
Professor; B.A., Antioch College; M.S., Michigan State University, Ph.D., Syracuse University. Rebel since 2003.

Graduate Faculty

Bonde, Josh - Full Graduate Faculty
Assistant Professor in Residence; B.S., University of Nevada Reno; M.S., Montana State University; Ph.D., University of Nevada Las Vegas. Rebel since 2014.

Buck, Brenda - Full Graduate Faculty
Professor; B.S., University of Notre Dame; M.S., Ph.D., New Mexico State University. Rebel since 1998.

Burnley, Pamela - Full Graduate Faculty
Associate Research Professor; B.S., Brown University; M.S., Ph.D., University of California Davis. Rebel since 2008.

Cline, Jean S. - Full Graduate Faculty
Professor; B.S., Wisconsin State University; M.S., University of Arizona; Ph.D., Virginia Polytechnic Institute and State University. Rebel since 1990.

Giovanni, Melissa - Associate Graduate Faculty
Visiting Assistant Professor; B.S., University of Arizona; Ph.D., University of California Los Angeles. Rebel since 2013.

Hanson, Andrew - Full Graduate Faculty
Associate Professor; B.S., Montana State University; M.S., San Diego State University; Ph.D., Stanford University. Rebel since 2000.

Hausrath, Elisabeth - Full Graduate Faculty
Associate Professor; B.S., Brown University; Ph.D., Pennsylvania State University. Rebel since 2009.

Huang, Shichun - Full Graduate Faculty
Assistant Professor; B.S., University of Science and Technology of China; Ph.D., Massachusetts Institute of Technology. Rebel since 2014.

Jiang, Ganqing Q. - Full Graduate Faculty
Professor; B.A., Xiangtan Mining College; M.Sc., China University of Geosciences; Ph.D., Columbia University. Rebel since 2004.

Judkins, Gabriel - Full Graduate Faculty
Assistant Professor in Residence; B.S., State University of New York Geneseo; M.S., Ph.D., Arizona State University. Rebel since 2009.

Kreamer, David K. - Full Graduate Faculty
Professor; B.S., M.S., Ph.D., University of Arizona. Rebel since 1990.

Metcalf, Rodney V. - Full Graduate Faculty
Associate Professor; B.S., M.S., University of Kentucky; Ph.D., University of New Mexico. Rebel since 1991.

Nicholl, Michael J. - Full Graduate Faculty
Associate Professor; B.S., Eastern Michigan University; M.S., Ph.D., University of Nevada, Reno. Rebel since 2004.

Ren, Minghua - Associate Graduate Faculty
Assistant Research Professor; B.S., Nanjing University; M.S., Ph.D. Baylor University. Rebel since 2011.

Rowland, Stephen M. - Full Graduate Faculty
Professor; A.B., University of California, Berkeley; Ph.D., University of California, Santa Cruz. Rebel since 1978.

Taylor, Wanda J. - Full Graduate Faculty
Professor; B.S., University of Minnesota; M.S., Syracuse University; Ph.D., University of Utah. Rebel since 1991.

Tschauner, Oliver - Associate Graduate Faculty
Associate Research Professor; B.S., M.S., Ph.D., University of Cologne. Rebel since 2008.
Doctor of Philosophy - Geoscience

Plan Description

The Doctor of Philosophy – Geoscience degree is designed to prepare students for demanding research-oriented careers in academia, government service, private consulting, and industry. Working closely with their advisors, students focus on original research in an emphasis area. Research expectations are high; students are expected to develop original lines of research that will lead to three or more original manuscripts that are suitable for submission to a refereed scientific journal. Students are expected to have strong content knowledge in their area of emphasis and three additional sub-disciplines of the geologic sciences. Fundamental knowledge levels are tested first in a diagnostic interview that is used to guide coursework taken by the student, and then later in a comprehensive exam.

For more information about your program, including your graduate program handbook and learning outcomes, please visit the Degree Directory.

Plan Admission Requirements

Applications available on the UNLV Graduate College website.

All domestic and international applicants must review and follow the Graduate College Admission and Registration Requirements.

Geology Track

The emphasis in Geology includes the fields of economic geology, environmental geology, geochemistry, geochronology, geomorphology, igneous petrology, paleontology, metamorphic petrology, Quaternary geology, pedology, sedimentology, stratigraphy, structural geology, surficial processes, tectonics, and volcanology.

Applicants must satisfy the following requirements:

1. For the Post-Bachelor’s Track: A bachelor's degree in geology or equivalent.
2. For the Post-Master's Track: A Master of Science degree in geology or equivalent.
3. It is recommended that the student have completed the following courses for unconditional admission to the program. An introductory geology class and six of the following eight classes (or their equivalents): mineralogy, geochemistry, geomorphology, structural geology, igneous and metamorphic petrology, paleontology, field geology, and sedimentology/stratigraphy.

Geophysics Track
Applicants must satisfy the following requirements:

1. For the Post-Bachelor's Track: A bachelor's degree in geology, engineering, physics or mathematics.
2. For the Post-Master's Track: A Master of Science degree.
3. To be admitted to the program with a Geophysics emphasis, it is recommended that the student have completed the following courses for unconditional admission to the program:
 1. Mathematics: Three semesters of calculus
 2. Physics: Two semesters of introductory (calculus level) physics

Soil Science Track
Applicants must satisfy the following requirements:

1. For the Post-Bachelor's Track: B.S degree in a Natural Science (or similar field and course work) or B.A. degree in Natural Science (or similar field and course work) with approval of the graduate coordinator.
2. For the Post-Master's Track: A Master of Science degree.
3. To be admitted to the program with a Soil Science emphasis, it is recommended that the student have completed two of the following courses for unconditional admission to the program: Mineralogy, Geomorphology, Sedimentology/Stratigraphy, or Geochemistry.

Hydrogeology Track
Applicants must satisfy the following requirements:

1. For the Post-Bachelor’s Track: A B.S. degree in geology or a related discipline (e.g., civil engineering).
2. For the Post-Master's Track: A master's degree in geology or a related discipline (e.g., civil engineering).
3. To be admitted to the program with a hydrogeology emphasis, it is required that the student have completed four of the following courses (or their equivalents) for unconditional admission to the program:
 - GEOL 474 - Hydrogeology
 - GEOL 330 - Geochemistry
 - GEOL 333 - Geomorphology
 - GEOL 341 - Structural Geology
 - GEOL 348 - Field Geology
 - GEOL 462 - Stratigraphy and Sedimentology

Students are accepted into a degree program as described in the Graduate Catalog. The faculty and corresponding sub-disciplines and sub-plans within the described programs are subject to change at any time.

Plan Requirements

See Subplan Requirements below.

Subplan 1 Requirements: Post-Bachelor's - Geology Track

Total Credits Required: 60
Course Requirements

Required Course – Credits: 3
GEOL 701 - Research Methods in Geoscience

Elective Courses – Credits: 45
Complete 45 credits of 600- or 700-level GEOL courses, or other advisor-approved courses.

Dissertation – Credits: 12
GEOL 799 - Dissertation

Degree Requirements

1. Students must complete a minimum of 60 credit hours with a minimum GPA of 3.00.
2. A minimum of 24 of the 60 credits required must be at the 700-level.
3. Although more course work and dissertation credits may be taken, only 12 credits of Dissertation, and 48 course credits will be counted toward the degree program.
4. Doctoral students are encouraged to take courses from outside of geoscience; however, a minimum of 15 credits must be geoscience (GEOL) courses.
5. A maximum of three credits of Independent Study are permitted, except in special circumstances in which case permission from the doctoral advising committee, the department Graduate Coordinator and the department chair is required.
6. Satisfactory progress toward meeting the degree requirements is required of all candidates. Satisfactory progress is defined as, at a minimum:
 a. Maintenance of at least a 3.00 grade point average in all graduate-level courses. Two grades of B- are permitted in the degree program as long as the GPA remains at or above 3.00. One grade of C+ or lower results in academic probation even if the overall GPA is above 3.0. Two grades of C+ or lower will result in automatic suspension from the program.
 b. Selecting a dissertation advisor and committee. The advisor must be selected before the end of the first semester and the committee before the end of the second semester.
 c. Scheduling of an interview with the advisor either during or before the first semester. If an advisor is not selected, a temporary advisor will be assigned by the graduate coordinator. The purpose of the interview is to develop a plan of course work for the first year.
 d. In consultation with his/her advisor, a student will organize a thesis committee of at least three departmental members. In addition, a fourth member from outside the department, known as the Graduate College Representative, must be appointed. An additional committee member may be added at the student and department's discretion. Please see Graduate College policy for committee appointment guidelines.
 e. Scheduling of a diagnostic interview with the Advisory Committee before the end of the 2nd semester. The purpose of the interview is to develop a list of recommended courses and design the student's degree program, which must be submitted prior to completing 16 credits of course work toward the degree.
 f. Preparation of a dissertation proposal and satisfactory performance on a Proposal Defense Examination. This examination must be completed prior to the end of the third semester. The Proposal Defense Examination focuses on the dissertation proposal and the student's ability to perform the research. It includes a formal oral presentation of the student's dissertation proposal, research to date, and questions by the dissertation advisory committee on the dissertation topic. The Proposal Defense Examination is to be taken prior to the Comprehensive Examination.
 g. Satisfactory performance on the Comprehensive Examination. Ph.D. students must have a basic knowledge of Physical Geology in addition to a comprehensive knowledge of three fields of
geosciences (see Department of Geoscience Graduate Student Guidelines for recommended fields for each Ph.D. Emphasis). The format and content of the exam will be determined by the student's doctoral advisory committee with approval of the department graduate coordinator. The Comprehensive Examination will be taken either the semester after all course work is completed or before the end of the fifth semester, whichever comes first. The examination will be oral. In exceptional circumstances, as determined by the student's dissertation committee and the graduate coordinator, the examination will consist of both oral and written components. Students who fail to pass the Comprehensive Examination or Proposal Defense on the first attempt must successfully complete a second examination (as specified by the doctoral advisory committee) within the next six months to remain in the program. Students who entered the program with a baccalaureate degree and who fail the second examination may be allowed to continue as a Master of Science student with the consent of the doctoral advising committee. Students who entered the program with a master's degree who fail the examination a second time will be separated from the program. A student who has successfully passed both the Proposal Defense and Comprehensive Examinations will be admitted to candidacy for the Ph.D. degree.

h. Satisfactory performance on a final examination will consist of the presentation and defense of the dissertation research. The defense will consist of an oral presentation open to the public, a short period of questions from the public, a closed session of questions from the doctoral advising committee, and a closed deliberation and vote by just the advisory committee members. Any graduate faculty member may attend the closed session of questions of the defense.

7. Using Degree Audit as a guide, a degree program must be approved by the advisory committee prior to the beginning of the third semester of enrollment.

8. It is recommended that the student be a teaching assistant or instructor for at least one semester.

9. Students may request a maximum of 15 graduate credits taken at UNLV prior to admission be included in the graduate degree program, providing those credits were not used to fulfill undergraduate requirements and a grade of B (3.00) or higher was achieved.

Graduation Requirements

See Plan Graduation Requirements below.

Subplan 2 Requirements: Post-Bachelor's - Geophysics Track

Total Credits Required: 60
Course Requirements

Required Course – Credits: 3
GEOL 701 - Research Methods in Geoscience

Core Course – Credits: 3
Complete one of the following courses:
CEE 636 - Engineering Geophysics
GEOL 645 - Geophysical Methods

Additional Core Course – Credits: 3
Complete one of the following courses:
ECG 780 - Digital Signal Processing
GEOL 793 - Independent Study and Research
Geophysics Courses – Credits: 9

Complete 9 credits in three or more of the following courses, or other advisor-approved courses.

- BIOL 618 - Microbial Ecology
- CEE 634 - Rock Mechanics
- CEE 636 - Engineering Geophysics
- CEE 676 - Earthquake Engineering
- CEE 737 - Soil Dynamics and Earthquake Engineering
- CEE 775 - Seismic Response of Structures
- GEOL 630 - Geographic Information Systems (GIS): Theory and Applications
- GEOL 643 - Plate Tectonics
- GEOL 644 - Tectonics of Orogenic Belts
- GEOL 646 - Geologic Applications in Remote Sensing
- GEOL 678 - Hydrogeochemistry
- GEOL 688 - Microtechniques in Geoscience
- GEOL 716 - Geostatistics
- GEOL 744 - Tectonics and Structures
- GEOL 745 - Advanced Structural Geology
- GEOL 746 - Strain and Microstructural Analysis
- GEOL 747 - Geological Evolution of Western North America
- GEOL 770 - Sedimentary Basins
- GEOL 772 - Reflection Seismic Data Interpretation
- GEOL 773 - Seminar in Geophysics

Elective Courses – Credits: 30

Complete 30 credits from the following list of courses, or other advisor-approved courses that are appropriate for the course of study.

- BIOL 618 - Microbial Ecology
- CEE 634 - Rock Mechanics
- CEE 636 - Engineering Geophysics
- CEE 676 - Earthquake Engineering
- CEE 737 - Soil Dynamics and Earthquake Engineering
- CEE 775 - Seismic Response of Structures
- GEOL 630 - Geographic Information Systems (GIS): Theory and Applications
- GEOL 643 - Plate Tectonics
- GEOL 644 - Tectonics of Orogenic Belts
- GEOL 646 - Geologic Applications in Remote Sensing
- GEOL 678 - Hydrogeochemistry

Dissertation – Credits: 12

- GEOL 799 - Dissertation

Degree Requirements

1. Students must complete a minimum of 60 credit hours with a minimum GPA of 3.00.
2. A minimum of 24 of the 60 credits required must be at the 700-level.
3. Although more course work and dissertation credits may be taken, only 12 credits of Dissertation, and 48 course credits will be counted toward the degree program.
4. Doctoral students are encouraged to take courses from outside of geoscience; however, a minimum of 15 credits must be geoscience (GEOL) courses.
5. A maximum of three credits of Independent Study are permitted, except in special circumstances in which case permission from the doctoral advising committee, the department Graduate Coordinator and the department chair is required.
6. Satisfactory progress toward meeting the degree requirements is required of all candidates. Satisfactory progress is defined as, at a minimum:
 a. Maintenance of at least a 3.00 grade point average in all graduate-level courses. Two grades of B- are permitted in the degree program as long as the GPA remains at or above 3.00. One grade of C+ or lower results in academic probation even if the overall GPA is above 3.0. Two grades of C+ or lower will result in automatic suspension from the program.
b. Selecting a dissertation advisor and committee. The advisor must be selected before the end of the first semester and the committee before the end of the second semester.

c. Scheduling of an interview with the advisor either during or before the first semester. If an advisor is not selected, a temporary advisor will be assigned by the graduate coordinator. The purpose of the interview is to develop a plan of course work for the first year.

d. In consultation with his/her advisor, a student will organize a thesis committee of at least three departmental members. In addition, a fourth member from outside the department, known as the Graduate College Representative, must be appointed. An additional committee member may be added at the student and department's discretion. Please see Graduate College policy for committee appointment guidelines.

e. Scheduling of a diagnostic interview with the Advisory Committee before the end of the 2nd semester. The purpose of the interview is to develop a list of recommended courses and design the student's degree program, which must be submitted prior to completing 16 credits of course work toward the degree.

f. Preparation of a dissertation proposal and satisfactory performance on a Proposal Defense Examination. This examination must be completed prior to the end of the third semester. The Proposal Defense Examination focuses on the dissertation proposal and the student's ability to perform the research. It includes a formal oral presentation of the student's dissertation proposal, research to date, and questions by the dissertation advisory committee on the dissertation topic. The Proposal Defense Examination is to be taken prior to the Comprehensive Examination.

g. Satisfactory performance on the Comprehensive Examination. Ph.D. students must have a basic knowledge of Physical Geology in addition to a comprehensive knowledge of three fields of geosciences (see Department of Geoscience Graduate Student Guidelines for recommended fields for each Ph.D. Emphasis). The format and content of the exam will be determined by the student's doctoral advisory committee with approval of the department graduate coordinator. The Comprehensive Examination will be taken either the semester after all course work is completed or before the end of the fifth semester, whichever comes first. The examination will be oral. In exceptional circumstances, as determined by the student's dissertation committee and the graduate coordinator, the examination will consist of both oral and written components. Students who fail to pass the Comprehensive Examination or Proposal Defense on the first attempt must successfully complete a second examination (as specified by the doctoral advisory committee) within the next six months to remain in the program. Students who entered the program with a baccalaureate degree and who fail the second examination may be allowed to continue as a Master of Science student with the consent of the doctoral advising committee. Students who entered the program with a master's degree who fail the examination a second
time will be separated from the program. A student who has successfully passed both the Proposal Defense and Comprehensive Examinations will be admitted to candidacy for the Ph.D. degree.

h. Satisfactory performance on a final examination will consist of the presentation and defense of the dissertation research. The defense will consist of an oral presentation open to the public, a short period of questions from the public, a closed session of questions from the doctoral advising committee, and a closed deliberation and vote by just the advisory committee members. Any graduate faculty member may attend the closed session of questions of the defense.

7. Using Degree Audit as a guide, a degree program must be approved by the advisory committee prior to the beginning of the third semester of enrollment.

8. It is recommended that the student be a teaching assistant or instructor for at least one semester.

9. Students may request a maximum of 15 graduate credits taken at UNLV prior to admission be included in the graduate degree program, providing those credits were not used to fulfill undergraduate requirements and a grade of B (3.00) or higher was achieved.

Graduation Requirements

See Plan Graduation Requirements below.

Subplan 3 Requirements: Post-Bachelor's - Soil Science Track

Total Credits Required: 60

Course Requirements

Required Course – Credits: 3

GEOL 701 - Research Methods in Geoscience

Core Courses – Credits: 6

GEOL 610 - Soil Classification and Resource Management
GEOL 786 - Soils Applications: Paleoclimate, Neotectonics, Archeology

Elective Courses – Credits: 39

Complete 39 credits from the following list of courses, or other advisor-approved courses that are appropriate for the course of study.

BIOL 618 - Microbial Ecology
BIOL 745 - Arid Zone Soils
GEOL 630 - Geographic Information Systems (GIS): Theory and Applications
GEOL 646 - Geologic Applications in Remote Sensing
GEOL 688 - Microtechniques in Geoscience
GEOL 712 - Watershed Hydrology
GEOL 716 - Geostatistics
GEOL 719 - Vadose Zone Hydrology
GEOL 735 - Seminar in Environmental Geology
GEOL 740 - Arid Zone Soils
GEOL 744 - Tectonics and Structures
GEOL 760 - Advanced Spatial Modeling with GIS
GEOL 770 - Sedimentary Basins
GEOL 776 - Paleosols Records of Past Landscapes

Dissertation – Credits: 12

GEOL 799 - Dissertation

Degree Requirements

1. Students must complete a minimum of 60 credit hours with a minimum GPA of 3.00.
2. A minimum of 24 of the 60 credits required must be at the 700-level.
3. Although more course work and dissertation credits may be taken, only 12 credits of Dissertation, and 48 course credits will be counted toward the degree program.
4. Doctoral students are encouraged to take courses from outside of geoscience; however, a minimum of 15 credits must be geoscience (GEOL) courses.
5. A maximum of three credits of Independent Study are permitted, except in special circumstances in which case permission
6. Satisfactory progress toward meeting the degree requirements is required of all candidates. Satisfactory progress is defined as, at a minimum:
 a. Maintenance of at least a 3.00 grade point average in all graduate-level courses. Two grades of B- are permitted in the degree program as long as the GPA remains at or above 3.00. One grade of C+ or lower results in academic probation even if the overall GPA is above 3.0. Two grades of C+ or lower will result in automatic suspension from the program.
 b. Selecting a dissertation advisor and committee. The advisor must be selected before the end of the first semester and the committee before the end of the second semester.
 c. Scheduling of an interview with the advisor either during or before the first semester. If an advisor is not selected, a temporary advisor will be assigned by the graduate coordinator. The purpose of the interview is to develop a plan of course work for the first year.
 d. In consultation with his/her advisor, a student will organize a thesis committee of at least three departmental members. In addition, a fourth member from outside the department, known as the Graduate College Representative, must be appointed. An additional committee member may be added at the student and department's discretion. Please see Graduate College policy for committee appointment guidelines.
 e. Scheduling of a diagnostic interview with the Advisory Committee before the end of the 2nd semester. The purpose of the interview is to develop a list of recommended courses and design the student's degree program, which must be submitted prior to completing 16 credits of course work toward the degree.
 f. Preparation of a dissertation proposal and satisfactory performance on a Proposal Defense Examination. This examination must be completed prior to the end of the third semester. The Proposal Defense Examination focuses on the dissertation proposal and the student's ability to perform the research. It includes a formal oral presentation of the student's dissertation proposal, research to date, and questions by the dissertation advisory committee on the dissertation topic. The Proposal Defense Examination is to be taken prior to the Comprehensive Examination.
 g. Satisfactory performance on the Comprehensive Examination. Ph.D. students must have a basic knowledge of Physical Geology in addition to a comprehensive knowledge of three fields of geosciences (see Department of Geoscience Graduate Student Guidelines for recommended fields for each Ph.D. Emphasis). The format and content of the exam will be determined by the student's doctoral advisory committee with approval of the department graduate coordinator. The Comprehensive Examination will be taken either the semester after all course work is completed or before the end of the fifth semester, whichever comes first. The examination will be oral. In exceptional circumstances, as determined by the student's dissertation committee and the graduate coordinator, the examination will consist of both
oral and written components. Students who fail to pass the Comprehensive Examination or Proposal Defense on the first attempt must successfully complete a second examination (as specified by the doctoral advisory committee) within the next six months to remain in the program. Students who entered the program with a baccalaureate degree and who fail the second examination may be allowed to continue as a Master of Science student with the consent of the doctoral advising committee. Students who entered the program with a master's degree who fail the examination a second time will be separated from the program. A student who has successfully passed both the Proposal Defense and Comprehensive Examinations will be admitted to candidacy for the Ph.D. degree.

h. Satisfactory performance on a final examination will consist of the presentation and defense of the dissertation research. The defense will consist of an oral presentation open to the public, a short period of questions from the public, a closed session of questions from the doctoral advising committee, and a closed deliberation and vote by just the advisory committee members. Any graduate faculty member may attend the closed session of questions of the defense.

7. Using Degree Audit as a guide, a degree program must be approved by the advisory committee prior to the beginning of the third semester of enrollment.

8. It is recommended that the student be a teaching assistant or instructor for at least one semester.

9. Students may request a maximum of 15 graduate credits taken at UNLV prior to admission be included in the graduate degree program, providing those credits were not used to fulfill undergraduate requirements and a grade of B (3.00) or higher was achieved.

Graduation Requirements

See Plan Graduation Requirements below.

Subplan 4 Requirements: Post-Bachelor's - Hydrogeology Track

Total Credits Required: 60

Course Requirements

Required Course – Credits: 3

GEOL 701 - Research Methods in Geoscience

Elective Courses – Credits: 45

Complete 45 credits from the following list of courses, or other advisor-approved courses that are appropriate for the course of study.

BIOL 618 - Microbial Ecology
BIOL 745 - Arid Zone Soils
GEOL 630 - Geographic Information Systems (GIS): Theory and Applications
GEOL 646 - Geologic Applications in Remote Sensing
GEOL 674 - Hydrogeology
GEOL 678 - Hydrogeochemistry
GEOL 688 - Microtechniques in Geoscience
GEOL 709 - Field Methods in Hydrogeology
GEOL 711 - Principles of Hydrology and Hydraulics
GEOL 712 - Watershed Hydrology
GEOL 715 - Advanced Hydrogeology
GEOL 716 - Geostatistics
GEOL 719 - Vadose Zone Hydrology
GEOL 735 - Seminar in Environmental Geology
GEOL 740 - Arid Zone Soils
GEOL 744 - Tectonics and Structures
GEOL 760 - Advanced Spatial Modeling with GIS
GEOL 765 - Seminar in Stratigraphy
GEOL 770 - Sedimentary Basins
GEOL 776 - Paleosols Records of Past Landscapes
GEOL 785 - Seminar in Sedimentology
GEOL 792 - Seminar in Hydroscience

Dissertation – Credits: 12
GEOL 799 - Dissertation

Degree Requirements

1. Students must complete a minimum of 60 credit hours with a minimum GPA of 3.00.
2. A minimum of 24 of the 60 credits required must be at the 700-level.
3. Although more coursework and dissertation credits may be taken, only 12 credits of Dissertation, and 48 course credits will be counted toward the degree program.
4. Doctoral students are encouraged to take courses from outside of geoscience; however, a minimum of 15 credits must be geoscience (GEOL) courses.
5. A maximum of three credits of Independent Study are permitted, except in special circumstances in which case permission from the doctoral advising committee, the department Graduate Coordinator and the department chair is required.
6. Satisfactory progress toward meeting the degree requirements is required of all candidates. Satisfactory progress is defined as, at a minimum:
 a. Maintenance of at least a 3.00 grade point average in all graduate-level courses. Two grades of B- are permitted in the degree program as long as the GPA remains at or above 3.00. One grade of C+ or lower results in academic probation even if the overall GPA is above 3.0. Two grades of C+ or lower will result in automatic suspension from the program.
 b. Selecting a dissertation advisor and committee. The advisor must be selected before the end of the first semester and the committee before the end of the second semester.
 c. Scheduling of an interview with the advisor either during or before the first semester. If an advisor is not selected, a temporary advisor will be assigned by the graduate coordinator. The purpose of the interview is to develop a plan of course work for the first year.
 d. In consultation with his/her advisor, a student will organize a thesis committee of at least three departmental members. In addition, a fourth member from outside the department, known as the Graduate College Representative, must be appointed. An additional committee member may be added at the student and department’s discretion. Please see Graduate College policy for committee appointment guidelines.
 e. Scheduling of a diagnostic interview with the Advisory Committee before the end of the 2nd semester. The purpose of the interview is to develop a list of recommended courses and design the student’s degree program, which must be submitted prior to completing 16 credits of course work toward the degree.
 f. Preparation of a dissertation proposal and satisfactory performance on a Proposal Defense Examination. This examination must be completed prior to the end of the third semester. The Proposal Defense Examination focuses on the dissertation proposal and the student’s ability to perform the research. It includes a formal oral presentation of the student’s dissertation proposal, research to date, and questions by the dissertation advisory committee on the dissertation topic. The Proposal Defense Examination is to be taken prior to the Comprehensive Examination.
 g. Satisfactory performance on the Comprehensive Examination. Ph.D. students must have a basic knowledge of Physical Geology in addition to a comprehensive knowledge of three fields of
geosciences (see Department of Geoscience Graduate Student Guidelines for recommended fields for each Ph.D. Emphasis). The format and content of the exam will be determined by the student's doctoral advisory committee with approval of the department graduate coordinator. The Comprehensive Examination will be taken either the semester after all course work is completed or before the end of the fifth semester, whichever comes first. The examination will be oral. In exceptional circumstances, as determined by the student's dissertation committee and the graduate coordinator, the examination will consist of both oral and written components. Students who fail to pass the Comprehensive Examination or Proposal Defense on the first attempt must successfully complete a second examination (as specified by the doctoral advisory committee) within the next six months to remain in the program. Students who entered the program with a baccalaureate degree and who fail the second examination may be allowed to continue as a Master of Science student with the consent of the doctoral advising committee. Students who entered the program with a master's degree who fail the examination a second time will be separated from the program. A student who has successfully passed both the Proposal Defense and Comprehensive Examinations will be admitted to candidacy for the Ph.D. degree.

h. Satisfactory performance on a final examination will consist of the presentation and defense of the dissertation research. The defense will consist of an oral presentation open to the public, a short period of questions from the public, a closed session of questions from the doctoral advising committee, and a closed deliberation and vote by just the advisory committee members. Any graduate faculty member may attend the closed session of questions of the defense.

7. Using Degree Audit as a guide, a degree program must be approved by the advisory committee prior to the beginning of the third semester of enrollment.

8. It is recommended that the student be a teaching assistant or instructor for at least one semester.

9. Students may request a maximum of 15 graduate credits taken at UNLV prior to admission be included in the graduate degree program, providing those credits were not used to fulfill undergraduate requirements and a grade of B (3.00) or higher was achieved.

Graduation Requirements

See Plan Graduation Requirements below.

Subplan 5 Requirements: Post-Master's - Geology Track

Total Credits Required: 36

Course Requirements

Required Course – Credits: 3

GEOL 701 - Research Methods in Geoscience

Elective Courses – Credits: 21

Complete 21 credits of 600- or 700-level GEOL courses, or other advisor-approved courses.

Dissertation – Credits: 12

GEOL 799 - Dissertation

Degree Requirements
1. Students must complete a minimum of 36 credit hours with a minimum GPA of 3.00.
2. A minimum of 12 of the 36 credits required must be at the 700-level.
3. Although more course work and dissertation credits may be taken, only 12 credits of Dissertation, and 24 course credits will be counted toward the degree program.
4. Doctoral students are encouraged to take courses from outside of geoscience; however, a minimum of 15 credits must be geoscience (GEOL) courses.
5. A maximum of three credits of Independent Study are permitted, except in special circumstances in which case permission from the doctoral advising committee, the department Graduate Coordinator and the department chair is required.
6. Satisfactory progress toward meeting the degree requirements is required of all candidates. Satisfactory progress is defined as, at a minimum:
 a. Maintenance of at least a 3.00 grade point average in all graduate-level courses. Two grades of B- are permitted in the degree program as long as the GPA remains at or above 3.00. One grade of C+ or lower results in academic probation even if the overall GPA is above 3.0. Two grades of C+ or lower will result in automatic suspension from the program.
 b. Selecting a dissertation advisor and committee. The advisor must be selected before the end of the first semester and the committee before the end of the second semester.
 c. Scheduling of an interview with the advisor either during or before the first semester. If an advisor is not selected, a temporary advisor will be assigned by the graduate coordinator. The purpose of the interview is to develop a plan of course work for the first year.
 d. In consultation with his/her advisor, a student will organize a thesis committee of at least three departmental members. In addition, a fourth member from outside the department, known as the Graduate College Representative, must be appointed. An additional committee member may be added at the student and department's discretion. Please see Graduate College policy for committee appointment guidelines.
 e. Scheduling of a diagnostic interview with the Advisory Committee before the end of the 2nd semester. The purpose of the interview is to develop a list of recommended courses and design the student's degree program, which must be submitted prior to completing 16 credits of course work toward the degree.
 f. Preparation of a dissertation proposal and satisfactory performance on a Proposal Defense Examination. This examination must be completed prior to the end of the third semester. The Proposal Defense Examination focuses on the dissertation proposal and the student's ability to perform the research. It includes a formal oral presentation of the student's dissertation proposal, research to date, and questions by the dissertation advisory committee on the dissertation topic. The Proposal Defense Examination is to be taken prior to the Comprehensive Examination.
 g. Satisfactory performance on the Comprehensive Examination. Ph.D. students must have a basic knowledge of Physical Geology in addition to a comprehensive knowledge of three fields of geosciences (see Department of Geoscience Graduate Student Guidelines for recommended fields for each Ph.D. Emphasis). The format and content of the exam will
be determined by the student's doctoral advisory committee with approval of the department graduate coordinator. The Comprehensive Examination will be taken either the semester after all course work is completed or before the end of the fifth semester, whichever comes first. The examination will be oral. In exceptional circumstances, as determined by the student's dissertation committee and the graduate coordinator, the examination will consist of both oral and written components. Students who fail to pass the Comprehensive Examination or Proposal Defense on the first attempt must successfully complete a second examination (as specified by the doctoral advisory committee) within the next six months to remain in the program. Students who entered the program with a baccalaureate degree and who fail the second examination may be allowed to continue as a Master of Science student with the consent of the doctoral advising committee. Students who entered the program with a master's degree who fail the examination a second time will be separated from the program. A student who has successfully passed both the Proposal Defense and Comprehensive Examinations will be admitted to candidacy for the Ph.D. degree.

h. Satisfactory performance on a final examination will consist of the presentation and defense of the dissertation research. The defense will consist of an oral presentation open to the public, a short period of questions from the public, a closed session of questions from the doctoral advising committee, and a closed deliberation and vote by just the advisory committee members. Any graduate faculty member may attend the closed session of questions of the defense.

7. Using Degree Audit as a guide, a degree program must be approved by the advisory committee prior to the beginning of the third semester of enrollment.

8. It is recommended that the student be a teaching assistant or instructor for at least one semester.

9. Students may request a maximum of 15 graduate credits taken at UNLV prior to admission be included in the graduate degree program, providing those credits were not used to fulfill undergraduate requirements and a grade of B (3.00) or higher was achieved.

Graduation Requirements

See Plan Graduation Requirements below.

Subplan 6 Requirements: Post-Master's - Geophysics Track

Total Credits Required: 36
Course Requirements

Required Course – Credits: 3
GEOL 701 - Research Methods in Geoscience

Core Course – Credits: 3
Complete one of the following courses:
CEE 636 - Engineering Geophysics
GEOL 645 - Geophysical Methods

Additional Core Course – Credits: 3
Complete one of the following courses:
ECG 780 - Digital Signal Processing
GEOL 793 - Independent Study and Research

Geophysics Courses – Credits: 9
Complete 9 credits in three or more of the following courses, or other advisor-approved courses.
Dissertation – Credits: 12

GEOL 799 - Dissertation

Degree Requirements

1. Students must complete a minimum of 36 credit hours with a minimum GPA of 3.00.
2. A minimum of 12 of the 36 credits required must be at the 700-level.
3. Although more course work and dissertation credits may be taken, only 12 credits of Dissertation, and 24 course credits will be counted toward the degree program.
4. Doctoral students are encouraged to take courses from outside of geoscience; however, a minimum of 15 credits must be geoscience (GEOL) courses.
5. A maximum of three credits of Independent Study are permitted, except in special circumstances in which case permission from the doctoral advising committee, the department Graduate Coordinator and the department chair is required.
6. Satisfactory progress toward meeting the degree requirements is required of all candidates. Satisfactory progress is defined as, at a minimum:
 a. Maintenance of at least a 3.00 grade point average in all graduate-level courses. Two grades of B- are permitted in the degree program as long as the GPA remains at or above 3.00. One grade of C+ or lower results in academic probation even if the overall GPA is above 3.0. Two grades of C+ or lower will result in automatic suspension from the program.
 b. Selecting a dissertation advisor and committee. The advisor must be selected before the end of the first...
semester and the committee before the end of the second semester.

c. Scheduling of an interview with the advisor either during or before the first semester. If an advisor is not selected, a temporary advisor will be assigned by the graduate coordinator. The purpose of the interview is to develop a plan of course work for the first year.

d. In consultation with his/her advisor, a student will organize a thesis committee of at least three departmental members. In addition, a fourth member from outside the department, known as the Graduate College Representative, must be appointed. An additional committee member may be added at the student and department's discretion. Please see Graduate College policy for committee appointment guidelines.

e. Scheduling of a diagnostic interview with the Advisory Committee before the end of the 2nd semester. The purpose of the interview is to develop a list of recommended courses and design the student's degree program, which must be submitted prior to completing 16 credits of course work toward the degree.

f. Preparation of a dissertation proposal and satisfactory performance on a Proposal Defense Examination. This examination must be completed prior to the end of the third semester. The Proposal Defense Examination focuses on the dissertation proposal and the student's ability to perform the research. It includes a formal oral presentation of the student's dissertation proposal, research to date, and questions by the dissertation advisory committee on the dissertation topic. The Proposal Defense Examination is to be taken prior to the Comprehensive Examination.

g. Satisfactory performance on the Comprehensive Examination. Ph.D. students must have a basic knowledge of Physical Geology in addition to a comprehensive knowledge of three fields of geosciences (see Department of Geoscience Graduate Student Guidelines for recommended fields for each Ph.D. Emphasis). The format and content of the exam will be determined by the student's doctoral advisory committee with approval of the department graduate coordinator. The Comprehensive Examination will be taken either the semester after all course work is completed or before the end of the fifth semester, whichever comes first. The examination will be oral. In exceptional circumstances, as determined by the student's dissertation committee and the graduate coordinator, the examination will consist of both oral and written components. Students who fail to pass the Comprehensive Examination or Proposal Defense on the first attempt must successfully complete a second examination (as specified by the doctoral advisory committee) within the next six months to remain in the program. Students who entered the program with a baccalaureate degree and who fail the second examination may be allowed to continue as a Master of Science student with the consent of the doctoral advising committee. Students who entered the program with a master's degree who fail the examination a second time will be separated from the program. A student who has successfully passed both the
Proposal Defense and Comprehensive Examinations will be admitted to candidacy for the Ph.D. degree.

h. Satisfactory performance on a final examination will consist of the presentation and defense of the dissertation research. The defense will consist of an oral presentation open to the public, a short period of questions from the public, a closed session of questions from the doctoral advising committee, and a closed deliberation and vote by just the advisory committee members. Any graduate faculty member may attend the closed session of questions of the defense.

7. Using Degree Audit as a guide, a degree program must be approved by the advisory committee prior to the beginning of the third semester of enrollment.

8. It is recommended that the student be a teaching assistant or instructor for at least one semester.

9. Students may request a maximum of 15 graduate credits taken at UNLV prior to admission be included in the graduate degree program, providing those credits were not used to fulfill undergraduate requirements and a grade of B (3.00) or higher was achieved.

Graduation Requirements

See Plan Graduation Requirements below.

Subplan 7 Requirements: Post-Master's - Soil Science Track

Total Credits Required: 36

Course Requirements

Required Courses – Credits: 9

GEOL 610 - Soil Classification and Resource Management
GEOL 701 - Research Methods in Geoscience
GEOL 786 - Soils Applications: Paleoclimate, Neotectonics, Archeology

Elective Courses – Credits: 15

Complete 15 credits from the following list of courses, or other advisor-approved courses that are appropriate for the course of study.

BIOL 618 - Microbial Ecology
BIOL 745 - Arid Zone Soils
GEOL 630 - Geographic Information Systems (GIS): Theory and Applications
GEOL 646 - Geologic Applications in Remote Sensing
GEOL 688 - Microtechniques in Geoscience
GEOL 712 - Watershed Hydrology
GEOL 716 - Geostatistics
GEOL 719 - Vadose Zone Hydrology
GEOL 735 - Seminar in Environmental Geology
GEOL 740 - Arid Zone Soils
GEOL 744 - Tectonics and Structures
GEOL 760 - Advanced Spatial Modeling with GIS
GEOL 770 - Sedimentary Basins
GEOL 776 - Paleosols Records of Past Landscapes

Dissertation – Credits: 12

GEOL 799 - Dissertation

Degree Requirements

1. Students must complete a minimum of 36 credit hours with a minimum GPA of 3.00.
2. A minimum of 12 of the 36 credits required must be at the 700-level.
3. Although more course work and dissertation credits may be taken, only 12 credits of Dissertation, and 24 course credits will be counted toward the degree program.
4. Doctoral students are encouraged to take courses from outside of geoscience; however, a minimum of 15 credits must be geoscience (GEOL) courses.
5. A maximum of three credits of Independent Study are permitted, except in special circumstances in which case permission from the doctoral advising committee, the department Graduate Coordinator and the department chair is required.
6. Satisfactory progress toward meeting the degree requirements is required of all
candidates. Satisfactory progress is defined as, at a minimum:

a. Maintenance of at least a 3.00 grade point average in all graduate-level courses. Two grades of B- are permitted in the degree program as long as the GPA remains at or above 3.00. One grade of C+ or lower results in academic probation even if the overall GPA is above 3.0. Two grades of C+ or lower will result in automatic suspension from the program.

b. Selecting a dissertation advisor and committee. The advisor must be selected before the end of the first semester and the committee before the end of the second semester.

c. Scheduling of an interview with the advisor either during or before the first semester. If an advisor is not selected, a temporary advisor will be assigned by the graduate coordinator. The purpose of the interview is to develop a plan of coursework for the first year.

d. In consultation with his/her advisor, a student will organize a thesis committee of at least three departmental members. In addition, a fourth member from outside the department, known as the Graduate College Representative, must be appointed. An additional committee member may be added at the student and department’s discretion. Please see Graduate College policy for committee appointment guidelines.

e. Scheduling of a diagnostic interview with the Advisory Committee before the end of the 2nd semester. The purpose of the interview is to develop a list of recommended courses and design the student’s degree program, which must be submitted prior to completing 16 credits of course work toward the degree.

f. Preparation of a dissertation proposal and satisfactory performance on a Proposal Defense Examination. This examination must be completed prior to the end of the third semester. The Proposal Defense Examination focuses on the dissertation proposal and the student’s ability to perform the research. It includes a formal oral presentation of the student’s dissertation proposal, research to date, and questions by the dissertation advisory committee on the dissertation topic. The Proposal Defense Examination is to be taken prior to the Comprehensive Examination.

g. Satisfactory performance on the Comprehensive Examination. Ph.D. students must have a basic knowledge of Physical Geology in addition to a comprehensive knowledge of three fields of geosciences (see Department of Geoscience Graduate Student Guidelines for recommended fields for each Ph.D. Emphasis). The format and content of the exam will be determined by the student’s doctoral advisory committee with approval of the department graduate coordinator. The Comprehensive Examination will be taken either the semester after all course work is completed or before the end of the fifth semester, whichever comes first. The examination will be oral. In exceptional circumstances, as determined by the student’s dissertation committee and the graduate coordinator, the examination will consist of both oral and written components. Students who fail to pass the Comprehensive Examination or Proposal Defense on the first attempt must successfully complete
a second examination (as specified by the doctoral advisory committee) within the next six months to remain in the program. Students who entered the program with a baccalaureate degree and who fail the second examination may be allowed to continue as a Master of Science student with the consent of the doctoral advising committee. Students who entered the program with a master's degree who fail the examination a second time will be separated from the program. A student who has successfully passed both the Proposal Defense and Comprehensive Examinations will be admitted to candidacy for the Ph.D. degree.

h. Satisfactory performance on a final examination will consist of the presentation and defense of the dissertation research. The defense will consist of an oral presentation open to the public, a short period of questions from the public, a closed session of questions from the doctoral advising committee, and a closed deliberation and vote by just the advisory committee members. Any graduate faculty member may attend the closed session of questions of the defense.

7. Using Degree Audit as a guide, a degree program must be approved by the advisory committee prior to the beginning of the third semester of enrollment.

8. It is recommended that the student be a teaching assistant or instructor for at least one semester.

9. Students may request a maximum of 15 graduate credits taken at UNLV prior to admission be included in the graduate degree program, providing those credits were not used to fulfill undergraduate requirements and a grade of B (3.00) or higher was achieved.

Graduation Requirements

See Plan Graduation Requirements below.

Subplan 8 Requirements: Post-Master's - Hydrogeology Track

Total Credits Required: 36

Course Requirements

Required Course – Credits: 3

GEOL 701 - Research Methods in Geoscience

Elective Courses – Credits: 21

Complete 21 credits from the following list of courses, or other advisor-approved courses that are appropriate for the course of study.

BIOL 618 - Microbial Ecology
BIOL 745 - Arid Zone Soils
GEOL 630 - Geographic Information Systems (GIS): Theory and Applications
GEOL 646 - Geologic Applications in Remote Sensing
GEOL 674 - Hydrogeology
GEOL 678 - Hydrogeochemistry
GEOL 688 - Microtechniques in Geoscience
GEOL 709 - Field Methods in Hydrogeology
GEOL 711 - Principles of Hydrology and Hydraulics
GEOL 712 - Watershed Hydrology
GEOL 715 - Advanced Hydrogeology
GEOL 716 - Geostatistics
GEOL 719 - Vadose Zone Hydrology
GEOL 735 - Seminar in Environmental Geology
GEOL 740 - Arid Zone Soils
GEOL 744 - Tectonics and Structures
GEOL 760 - Advanced Spatial Modeling with GIS
GEOL 765 - Seminar in Stratigraphy
GEOL 770 - Sedimentary Basins
GEOL 776 - Paleosols Records of Past Landscapes
GEOL 785 - Seminar in Sedimentology
GEOL 792 - Seminar in Hydroscience

Dissertation – Credits: 12

GEOL 799 - Dissertation

Degree Requirements

1. Students must complete a minimum of 36 credit hours with a minimum GPA of 3.00.
2. A minimum of 12 of the 36 credits required must be at the 700-level.
3. Although more course work and dissertation credits may be taken, only 12 credits of Dissertation, and 24 course credits will be counted toward the degree program.
4. Doctoral students are encouraged to take courses from outside of geoscience; however, a minimum of 15 credits must be geoscience (GEOL) courses.
5. A maximum of three credits of Independent Study are permitted, except in special circumstances in which case permission from the doctoral advising committee, the department Graduate Coordinator and the department chair is required.
6. Satisfactory progress toward meeting the degree requirements is required of all candidates. Satisfactory progress is defined as, at a minimum:
 a. Maintenance of at least a 3.00 grade point average in all graduate-level courses. Two grades of B- are permitted in the degree program as long as the GPA remains at or above 3.00. One grade of C+ or lower results in academic probation even if the overall GPA is above 3.0. Two grades of C+ or lower will result in automatic suspension from the program.
 b. Selecting a dissertation advisor and committee. The advisor must be selected before the end of the first semester and the committee before the end of the second semester.
 c. Scheduling of an interview with the advisor either during or before the first semester. If an advisor is not selected, a temporary advisor will be assigned by the graduate coordinator. The purpose of the interview is to develop a plan of course work for the first year.
 d. In consultation with his/her advisor, a student will organize a thesis committee of at least three departmental members. In addition, a fourth member from outside the department, known as the Graduate College Representative, must be appointed. An additional committee member may be added at the student and department's discretion. Please see Graduate College policy for committee appointment guidelines.
 e. Scheduling of a diagnostic interview with the Advisory Committee before the end of the 2nd semester. The purpose of the interview is to develop a list of recommended courses and design the student's degree program, which must be submitted prior to completing 16 credits of course work toward the degree.
 f. Preparation of a dissertation proposal and satisfactory performance on a Proposal Defense Examination. This examination must be completed prior to the end of the third semester. The Proposal Defense Examination focuses on the dissertation proposal and the student's ability to perform the research. It includes a formal oral presentation of the student's dissertation proposal, research to date, and questions by the dissertation advisory committee on the dissertation topic. The Proposal Defense Examination is to be taken prior to the Comprehensive Examination.
 g. Satisfactory performance on the Comprehensive Examination. Ph.D. students must have a basic knowledge of Physical Geology in addition to a comprehensive knowledge of three fields of geosciences (see Department of Geoscience Graduate Student Guidelines for recommended fields for each Ph.D. Emphasis). The format and content of the exam will be determined by the student's doctoral advisory committee with
approval of the department graduate coordinator. The Comprehensive Examination will be taken either the semester after all course work is completed or before the end of the fifth semester, whichever comes first. The examination will be oral. In exceptional circumstances, as determined by the student's dissertation committee and the graduate coordinator, the examination will consist of both oral and written components. Students who fail to pass the Comprehensive Examination or Proposal Defense on the first attempt must successfully complete a second examination (as specified by the doctoral advisory committee) within the next six months to remain in the program. Students who entered the program with a baccalaureate degree and who fail the second examination may be allowed to continue as a Master of Science student with the consent of the doctoral advising committee. Students who entered the program with a master's degree who fail the examination a second time will be separated from the program. A student who has successfully passed both the Proposal Defense and Comprehensive Examinations will be admitted to candidacy for the Ph.D. degree.

h. Satisfactory performance on a final examination will consist of the presentation and defense of the dissertation research. The defense will consist of an oral presentation open to the public, a short period of questions from the public, a closed session of questions from the doctoral advising committee, and a closed deliberation and vote by just the advisory committee members.

Any graduate faculty member may attend the closed session of questions of the defense.

7. Using Degree Audit as a guide, a degree program must be approved by the advisory committee prior to the beginning of the third semester of enrollment.

8. It is recommended that the student be a teaching assistant or instructor for at least one semester.

9. Students may request a maximum of 15 graduate credits taken at UNLV prior to admission be included in the graduate degree program, providing those credits were not used to fulfill undergraduate requirements and a grade of B (3.00) or higher was achieved.

Graduation Requirements

See Plan Graduation Requirements below.

Plan Graduation Requirements

1. The student must submit all required forms to the Graduate College and then apply for graduation up to two semesters prior to completing his/her degree requirements.

2. The student must submit and successfully defend his/her dissertation by the posted deadline. The defense must be advertised and is open to the public.

3. The student must submit his/her approved, properly formatted hard-copy dissertation to the Graduate College, and submit the approved electronic version to ProQuest by the posted deadline.
Master of Science - Geoscience

Plan Description

The Master of Science – Geoscience degree is designed to prepare students for a broad range of challenging careers in government service, private consulting, and industry. This thesis-based degree program also serves as a stepping-stone for those students who wish to pursue further graduate studies at the Doctoral level. Working closely with their advisor, students focus on original research in one of several areas of specialization, including: petrology, volcanology, economic geology, structural geology, sedimentology, geochemistry, hydrology, soil science, climate change, petroleum geology, and paleontology. Students are expected to develop original research suitable for submission to a refereed scientific journal. Students are expected to have strong content knowledge in their area of emphasis, which is tested during the culminating defense of their thesis research.

For more information about your program including your graduate program handbook and learning outcomes please visit the Degree Directory.

Plan Admission Requirements

Applications available on the UNLV Graduate College website.

All domestic and international applicants must review and follow the Graduate College Admission and Registration Requirements.

Geology Track
The emphasis in Geology includes the fields of economic geology, environmental geology, geochemistry, geochronology, geomorphology, igneous petrology, paleontology, metamorphic petrology, Quaternary geology, pedology, sedimentology, stratigraphy, structural geology, surficial processes, tectonics, and volcanology. Applicants must satisfy the following requirements:

1. A bachelor's degree in geology or equivalent.
2. In order to be admitted without contingencies the student must have completed an introductory geology class and six of the following eight classes (or their equivalents): mineralogy, geochemistry, geomorphology, structural geology, igneous and metamorphic petrology, paleontology, field geology, and sedimentology/stratigraphy.

Geophysics Track
Applicants must satisfy the following requirements:

1. A bachelor's degree in geology, engineering, physics or mathematics.
2. To be admitted to the program with a Geophysics emphasis, it is recommended that the student have completed the following courses for unconditional admission to the program.
 1. Mathematics: Three semesters of calculus
 2. Physics: Two semesters of introductory (calculus level) physics

Soil Science Track
Applicants must satisfy the following requirements:

1. B.S. degree in a Natural Science (or similar field and course work) or B.A. degree in Natural Science (or similar field and course work) with approval of the graduate coordinator.
2. To be admitted to the program with a Soil Science emphasis, it is recommended that the student have completed two of the following courses for unconditional admission to the program: Mineralogy, Geomorphology, Sedimentology/Stratigraphy, or Geochemistry.
Hydrogeology Track

Applicants must satisfy the following requirements:

1. A B.S. degree in geology or a related discipline (e.g., civil engineering).
2. To be admitted to the program with a hydrogeology emphasis, it is required that the student have completed four of the following courses (or their equivalents) for unconditional admission to the program:
 - GEOL 474 – Hydrogeology
 - GEOL 330 – Geochemistry
 - GEOL 333 – Geomorphology
 - GEOL 341 – Structural Geology
 - GEOL 348 – Field Geology
 - GEOL 462 – Stratigraphy and Sedimentology

Students are accepted into a degree program as described in the Graduate Catalog. The faculty and corresponding sub-disciplines and sub-plans within the described programs are subject to change at any time.

Plan Requirements

See Subplan Requirements below.

Subplan 1 Requirements: Geology Track

Total Credits Required: 30

Course Requirements

Required Courses – Credits: 4
- GEOL 701 - Research Methods in Geoscience
- GEOL 795 - Poster Presentation and Time Management

Elective Courses – Credits: 20

Complete 20 credits of 600- or 700-level GEOL courses, or other advisor-approved courses.

Thesis – Credits: 6
- GEOL 797 - Thesis

Degree Requirements

See Plan Degree Requirements below.

Graduation Requirements

See Plan Graduation Requirements below.

Subplan 2 Requirements: Geophysics Track

Total Credits Required: 30

Course Requirements

Required Courses – Credits: 4
- GEOL 701 - Research Methods in Geoscience
- GEOL 795 - Poster Presentation and Time Management

Core Course – Credits: 3

Complete one of the following courses:
- CEE 636 - Engineering Geophysics
- GEOL 645 - Geophysical Methods

Additional Core Course – Credits: 3

Complete one of the following courses:
- ECG 780 - Digital Signal Processing
- GEOL 793 - Independent Study and Research

Geophysics Courses – Credits: 9

Complete 9 credits in three or more of the following courses, or other advisor-approved courses.
- BIOL 618 - Microbial Ecology
- CEE 634 - Rock Mechanics
- CEE 636 - Engineering Geophysics
- CEE 676 - Earthquake Engineering
- CEE 737 - Soil Dynamics and Earthquake Engineering
- CEE 775 - Seismic Response of Structures
- GEOL 630 - Geographic Information Systems (GIS): Theory and Applications
- GEOL 643 - Plate Tectonics
- GEOL 644 - Tectonics of Orogenic Belts
- GEOL 646 - Geologic Applications in Remote Sensing
- GEOL 678 - Hydrogeochemistry
- GEOL 688 - Microtechniques in Geoscience
- GEOL 716 - Geostatistics
- GEOL 744 - Tectonics and Structures
GEOL 745 - Advanced Structural Geology
GEOL 746 - Strain and Microstructural Analysis
GEOL 747 - Geological Evolution of Western North America
GEOL 770 - Sedimentary Basins
GEOL 772 - Reflection Seismic Data Interpretation
GEOL 773 - Seminar in Geophysics

Elective Courses – Credits: 5

Complete 5 credits from the following list of courses, or other advisor-approved courses that are appropriate for the course of study.

- BIOL 618 - Microbial Ecology
- CEE 634 - Rock Mechanics
- CEE 636 - Engineering Geophysics
- CEE 676 - Earthquake Engineering
- CEE 737 - Soil Dynamics and Earthquake Engineering
- CEE 775 - Seismic Response of Structures
- GEOL 630 - Geographic Information Systems (GIS): Theory and Applications
- GEOL 643 - Plate Tectonics
- GEOL 644 - Tectonics of Orogenic Belts
- GEOL 646 - Geologic Applications in Remote Sensing
- GEOL 678 - Hydrogeochemistry
- GEOL 688 - Microtechniques in Geoscience
- GEOL 716 - Geostatistics
- GEOL 744 - Tectonics and Structures
- GEOL 745 - Advanced Structural Geology
- GEOL 746 - Strain and Microstructural Analysis
- GEOL 747 - Geological Evolution of Western North America
- GEOL 770 - Sedimentary Basins
- GEOL 772 - Reflection Seismic Data Interpretation
- GEOL 773 - Seminar in Geophysics

Thesis – Credits: 6

GEOL 797 - Thesis

Degree Requirements

See Plan Degree Requirements below.

Graduation Requirements

See Plan Graduation Requirements below.

Subplan 3 Requirements: Soil Science Track

Total Credits Required: 30

Course Requirements

Required Courses – Credits: 10

- GEOL 610 - Soil Classification and Resource Management
- GEOL 701 - Research Methods in Geoscience
- GEOL 786 - Soils Applications: Paleoclimate, Neotectonics, Archeology
- GEOL 795 - Poster Presentation and Time Management

Elective Courses – Credits: 14

Complete 14 credits from the following list of courses, or other advisor-approved courses that are appropriate for the course of study.

- BIOL 618 - Microbial Ecology
- BIOL 745 - Arid Zone Soils
- GEOL 630 - Geographic Information Systems (GIS): Theory and Applications
- GEOL 644 - Tectonics of Orogenic Belts
- GEOL 646 - Geologic Applications in Remote Sensing
- GEOL 688 - Microtechniques in Geoscience
- GEOL 712 - Watershed Hydrology
- GEOL 716 - Geostatistics
- GEOL 719 - Vadose Zone Hydrology
- GEOL 735 - Seminar in Environmental Geology
- GEOL 740 - Arid Zone Soils
- GEOL 744 - Tectonics and Structures
- GEOL 760 - Advanced Spatial Modeling with GIS
- GEOL 770 - Sedimentary Basins
- GEOL 776 - Paleosols Records of Past Landscapes

Thesis – Credits: 6

GEOL 797 - Thesis

Degree Requirements

See Plan Degree Requirements below.

Graduation Requirements

See Plan Graduation Requirements below.

Subplan 4 Requirements: Hydrogeology Track
Total Credits Required: 30

Course Requirements

Required Courses – Credits: 4

- GEOL 701 - Research Methods in Geoscience
- GEOL 795 - Poster Presentation and Time Management

Elective Courses – Credits: 20

Complete 20 credits from the following list of courses, or other advisor-approved courses that are appropriate for the course of study.

- GEOL 630 - Geographic Information Systems (GIS): Theory and Applications
- GEOL 646 - Geologic Applications in Remote Sensing
- GEOL 674 - Hydrogeology
- GEOL 678 - Hydrogeochemistry
- GEOL 709 - Field Methods in Hydrogeology
- GEOL 711 - Principles of Hydrology and Hydraulics
- GEOL 712 - Watershed Hydrology
- GEOL 715 - Advanced Hydrogeology
- GEOL 716 - Geostatistics
- GEOL 719 - Vadose Zone Hydrology
- GEOL 740 - Arid Zone Soils
- GEOL 744 - Tectonics and Structures
- GEOL 760 - Advanced Spatial Modeling with GIS
- GEOL 765 - Seminar in Stratigraphy
- GEOL 785 - Seminar in Sedimentology
- GEOL 792 - Seminar in Hydroscience

Thesis – Credits: 6

- GEOL 797 - Thesis

Degree Requirements

See Plan Degree Requirements below.

Graduation Requirements

See Plan Graduation Requirements below.

Plan Degree Requirements

1. Students must complete a minimum of 30 credit hours with a minimum GPA of 3.00.

2. At least 12 credits (excluding thesis) must be in 700-level courses.

3. GEOL 701 and GEOL 795 must be taken during the first year of enrollment.

4. Credits taken at other institutions will be considered for transfer; however, at least 16 of the 24 course credits required for the degree (not including thesis credits) must be taken at UNLV.

5. Students must confer with their appointed advisor prior to enrollment in their first semester. Using Degree Audit as a guide, a degree program must be approved by the advisory committee. A thesis prospectus must be filed with the Graduate College, and a thesis committee must be appointed by the end of the second semester after admission to the college. This responsibility rests with the student. Students will be dropped from the program and separated from the Graduate College if they fail to fulfill this requirement.

6. In consultation with his/her advisor, a student will organize a thesis committee of at least three departmental members. In addition, a fourth member from outside the department, known as the Graduate College Representative, must be appointed. An additional committee member may be added at the student and department’s discretion. Please see Graduate College policy for committee appointment guidelines.

7. Satisfactory progress toward meeting the degree requirements is required of all students. Satisfactory progress includes maintaining at least a 3.00 grade point average in all graduate-level courses. Consult the Geoscience Graduate Student Guidelines at http://geoscience.unlv.edu/graduatestudentguidelines.htm for full details.

Plan Graduation Requirements

1. The student must submit all required forms to the Graduate College and then apply for graduation up to two semesters prior to completing his/her degree requirements.
2. The student must submit and successfully defend his/her thesis by the posted deadline. The defense must be advertised and is open to the public.

3. The student must submit his/her approved, properly formatted hard-copy thesis to the Graduate College, and submit the approved electronic version to ProQuest by the posted deadline.

Geosciences Courses

GEOG 621 - Climatology
Credits 3
Physical characteristics of the atmosphere. World climatic classification. Local atmospheric field study. **Notes** This course is crosslisted with GEOG 421. Credit at the 600-level requires additional work.

GEOL 610 - Soil Classification and Resource Management
Credits 4
Morphology and classification of soils based on their physical, chemical and mineralogical composition. Introduction to soil genesis, soil mapping, and the relationship of soils to the limitations and potentials of land use. **Notes** This course is crosslisted with GEOL 410. Credit at the 600-level requires additional work.

GEOL 619 - Medical Geology
Credits 3
Medical Geology is the science surrounding the relationship between geological factors and health in humans, animals, and plants. This class focuses on the relationships between geology and human health. **Notes** This course is crosslisted with GEOL 419. Credit at the 600-level requires additional work.

GEOL 620 - Introduction to X-ray Diffraction and X-ray Spectrometry Methods
Credits 4
Introduction to the principles and methods of x-ray analysis as applied to the study of minerals. Powder camera, diffractometry and spectrometry methods covered. Two hours lecture and six hours laboratory. **Notes** This course is crosslisted with GEOL 420. Credit at the 600-level requires additional work.

GEOL 625 - Principles of Geochemistry
Credits 3
Fundamental geochemical processes operating within the earth’s lithosphere, hydrosphere and atmosphere. Topics include chemical differentiation of the earth, crystal chemistry, mineral stability and phase diagrams, aqueous geochemistry, isotope geochemistry, organic chemistry. **Notes** This course is crosslisted with GEOL 425. Credit at the 600-level requires additional work.
Prerequisites College level chemistry or geochemistry.

GEOL 629 - Geochemical Thermodynamics and Kinetics
Credits 3
Survey of the basic principles of thermodynamics and kinetics and their application to geological processes; applications to include igneous, metamorphic, hydrothermal, diagenetic, weathering, and aqueous systems.
Notes This course is crosslisted with GEOL 429. Credit at the 600-level requires additional work.

GEOL 630 - Geographic Information Systems (GIS): Theory and Applications
Credits 4
Survey of computer-based techniques in the storage, retrieval, analysis, and representation of spatially referenced data. Emphasis on the application of GIS technology to geologic problems such as natural hazard mapping, surface runoff and erosion, and environmental impact assessment.
Notes This course is crosslisted with GEOL 430. Credit at the 600-level requires additional work.

GEOL 633 - Glacial and Periglacial Geology
Credits 3
Origin and regimen of glaciers. Geomorphology and stratigraphic analysis of glacial and associated nonglacial deposits and environments.
Notes This course is crosslisted with GEOL 433. Credit at the 600-level requires additional work.

GEOL 634 - Quaternary Geology
Credits 3
Survey of global paleoenvironments, including geologic, climatic, and biotic changes during the Quaternary. Examination of the geological record of marine and terrestrial glaciated and nonglaciated environments.
Notes This course is crosslisted with GEOL 434. Credit at the 600-level requires additional work.

GEOL 636 - Quaternary Paleocology
Credits 3
Examination of the fossil record of the Quaternary including vertebrate, invertebrate, and floral assemblages. Emphasis on paleoenvironmental and paleoclimatological reconstructions.

Notes This course is crosslisted with GEOL 436. Credit at the 600-level requires additional work.

GEOL 637 - Paleoclimatology
Credits 3
Paleoclimatic history of the Earth, with emphasis on the Neogene and Quaternary Periods. Survey of marine and terrestrial geological records of paleoclimate, including physical sedimentology, geochemistry, and pollen profiles of ice and sediment cores and speleothems.
Notes This course is crosslisted with GEOL 437. Credit at the 600-level requires additional work.

GEOL 640 - Volcanology
Credits 3
Description and classification of volcanoes, volcanic eruptions, and volcanic deposits. Emphasis on the dynamics of volcanic eruptions, pyroclastic rocks, lava flows, and volcanic hazard assessment.
Notes This course is crosslisted with GEOL 440. Credit at the 600-level requires additional work.

GEOL 643 - Plate Tectonics
Credits 3
Study of the earth's origin, age, thermal and magnetic history; the dynamics and internal structure of lithospheric plates; the mechanisms and geometric constraints of plate motion; and a review of the motions of plates in the past.
Notes This course is crosslisted with GEOL 443. Credit at the 600-level requires additional work.

GEOL 644 - Tectonics of Orogenic Belts
Credits 3
Study of crustal deformation and the creation of mountain belts around the world. Emphasis on the comparative structural development of different regions around the globe within the context of plate tectonics.
Notes This course is crosslisted with GEOL 444. Credit at the 600-level requires additional work.

GEOL 645 - Geophysical Methods
Credits 4
Introduction to geophysical methods, including measurement techniques, rock properties, and interpretation methods using seismology, gravity, magnetics, ground penetrating radar, resistivity and well logs.
Notes This course is crosslisted with GEOL 445/445L. Credit at the 600-level requires additional work.

GEOL 645L - Geophysical Methods Lab
Graduate credit may be obtained for courses designated 600 or above. A full description of this course may be found in the Undergraduate Catalog under the corresponding 400 number.

Notes This course is crosslisted with GEOL 445L.
Credit at the 600-level requires additional work.

GEOL 646 - Geologic Applications in Remote Sensing
Credits 3
Introduction in the acquisition, processing, and interpretation of remote sensing data. Topics covered include basic mapping concepts, the structure of remote sensing data and analysis, thermal and radar techniques, and classification schemes.

Notes This course is crosslisted with GEOL 446.
Credit at the 600-level requires additional work.

GEOL 646L - Geologic Applications in Remote Sensing Lab
Graduate credit may be obtained for courses designated 600 or above. A full description of this course may be found in the Undergraduate Catalog under the corresponding 400 number.

Notes Credit at the 600-level normally requires additional work.

GEOL 649 - Geochronology
Credits 3
Theoretical foundations and modern analytical techniques used in isotopic dating of rocks. Discussion of applications to specific geologic problems and the thermal significance of isotopic dates. Survey of new dating techniques.

Notes This course is crosslisted with GEOL 449.
Credit at the 600-level requires additional work.

GEOL 671 - Petroleum Geology
Credits 4
Origin, migration, accumulation, and geologic distribution of petroleum. Surface, sub-surface and geophysical methods of exploration.

Notes This course is crosslisted with GEOL 471.
Credit at the 600-level requires additional work.

GEOL 674 - Hydrogeology
Credits 3
Factors controlling the occurrence and distribution of water resource, its quality and quantity, methods of exploration and development.

Notes This course is crosslisted with GEOL 474.
Credit at the 600-level requires additional work.

GEOL 677 - Geology of Metallic Ore Deposits
Credits 4
Geology of metallic ore deposits, origin, occurrence, and alteration. Application of ore deposit characteristics to exploration.

Notes This course is crosslisted with GEOL 477.
Credit at the 600-level requires additional work.

GEOL 678 - Hydrogeochemistry
Credits 3
Principles of aquatic geochemistry such as chemical thermodynamics, tableaux, and oxidation reduction and environmental organic geochemistry such as physicochemical properties of organic compounds and air/water/soil exchange of organic compounds for environmental studies. Concepts for practical environmental problems, geochemical modeling, and contaminant transport.

Notes This course is crosslisted with GEOL 478.
Credit at the 600-level requires additional work.

GEOL 685 - Engineering Geology
Credits 3
Application of physical geology to the construction industry. Consideration given to landslide problems, sites for dams, bridges, tunnels and canals; and possible control of erosion and sedimentation by rivers and oceans.

Notes This course is crosslisted with GEOL 485.
Credit at the 600-level requires additional work.

GEOL 688 - Microtechniques in Geoscience
Credits 3
Microanalytical techniques including transmitted and reflected light petrology and petrography, micro-imaging scanning electron microscope (SEM) and electron microprobe (EMP), chemical microanalyses (EMP), fluid inclusion microthermometry, and melt inclusion petrography. Project tailored to the student's interest required.

Notes This course is crosslisted with GEOL 488.
Credit at the 600-level requires additional work.
GEOL 701 - Research Methods in Geoscience
Credits 3
Discussion of the processes of scientific research and research design as applied to modern geoscience. Includes scientific approaches to field and laboratory research, research and professional ethics, writing, and public presentation. Model thesis prospectus and grant proposals prepared.
Notes Required weekend field trips familiarize students with the local geology.
Prerequisites Graduate standing or consent of instructor.

GEOL 703 - Topics in Advanced Geochemistry
Credits 3
This course will cover topics in advanced geochemistry, such as thermodynamics, kinetics, oxidation-reduction, acids and bases, weathering, and other topics of interest.
Notes May be repeated to a maximum of twelve credits.

GEOL 707 - Stable Isotope Geochemistry
Credits 3
Investigates stable isotopes in the hydrologic and geologic cycles, and their use as tracers in paleoclimatology, hydrogeology, and oceanography. Theory and research applications of stable isotopes in geologic, biologic, water, and atmospheric samples, including carbon, oxygen, hydrogen, nitrogen, strontium, and sulfur isotopes.
Prerequisites Geochemistry.

GEOL 708 - Radiogenic Isotope Geochemistry
Credits 3
Principles of radiogenic isotope geochemistry as a monitor of geochemical processes in the mantle, lithosphere and hydrosphere; applications to petrology, tectonics, economic geology, marine geology and paleoclimatology.
Prerequisites GEOL 330, GEOL 426, MATH 181 or equivalent, or consent of instructor.

GEOL 709 - Field Methods in Hydrogeology
Credits 3
A survey of techniques used to investigate field problems in hydrogeology. Data collection, analysis, and professional presentation of results are emphasized. Topics may include: water balance measures, water table mapping, estimation of hydraulic parameters, and ground-water monitoring. Additional topics suggested by students may also be explored.

GEOL 710 - Igneous Petrology
Credits 4
Origin of igneous rocks, relation of magma types to tectonic settings, physical properties of magmas, application of trace elements and isotopes to petrogenesis, modeling of crystal fractionation and partial melting, phase diagrams.
Notes Six hours laboratory.
Prerequisites GEOL 325 or equivalent or consent of instructor.

GEOL 711 - Principles of Hydrology and Hydraulics
Credits 3
Consideration of modern concepts of hydrology and hydraulics. Includes coverage of statistical methods of analysis, unsteady flow, channel design, modeling and simulation, urban hydrology, and design of hydraulic structures.
Prerequisites Consent of instructor.

GEOL 712 - Watershed Hydrology
Credits 3
Concepts and processes controlling water movement and distribution within the watershed; analysis techniques for understanding watershed dynamics; numerical simulation of various watershed-scale hydrologic processes.
Prerequisites Consent of instructor.

GEOL 713 - Flow and Transport in Unsaturated Fractured Media
Credits 3
Explores the current state of understanding regarding fluid flow and contaminant transport in unsaturated fractured geologic media (e.g., rock, soil) through review of recent literature. Competing conceptual models are contrasted in light of existing capabilities for numerical simulation at the scale of pertinent applied problems.

GEOL 715 - Advanced Hydrogeology
Credits 4
Advanced concepts used in ground water investigations, including flow system analysis, resource evaluation, exploration, development, and
monitoring.

Prerequisites GEOL 674

GEOL 716 - Geostatistics
Credits 3
Analysis of the spatial and temporal variations in geologic, hydrologic and geochemical data, including derived distributions, time series analysis, correlation and spectral analysis, interpolation techniques, cluster analysis and sensitivity and uncertainty techniques.
Prerequisites STA 491 or 691 (or equivalent) or consent of instructor.

GEOL 719 - Vadose Zone Hydrology
Credits 3
Basic physical properties of soils and water and the physical principles governing the soil-water system. Modeling the transport of moisture and chemicals in unsaturated soil with applications to practical field problems.
Prerequisites GEOL 674

GEOL 720 - Advanced Geochemistry
Credits 4
Contemporary geochemistry applied to igneous, metamorphic, and sedimentary rocks, economic mineral deposits, and problems of the origin of the Earth and other terrestrial planets.
Notes Six hours laboratory.
Prerequisites Graduate standing or consent of instructor.

GEOL 725 - Seminar in Petrology
Credits 3
Analysis of current problems, concepts, and research in petrology and closely related fields.
Prerequisites Graduate standing or consent of instructor.

GEOL 727 - Metamorphic Petrology
Credits 4
Application of field studies, petrography, mineralogy, phase equilibria, and isotopic methods to the study of metamorphic rocks and crustal evolution; explores relationships among metamorphism, tectonics and thermal evolution of the crust.
Notes Three hours lecture, three hours laboratory.
Prerequisites GEOL 429/629 or equivalent and graduate standing, or consent of instructor.

GEOL 730 - Seminar in Quaternary Studies
Credits 3
Evaluation of current methodology focused on solving problems of Quaternary chronology, geomorphic processes, and environmental reconstruction. Emphasis on pluvial and post-pluvial environments of the western United States, the evolution of landforms and the development of stratigraphic units and surficial geology originating during the past three million years.
Prerequisites Graduate standing or consent of instructor.

GEOL 735 - Seminar in Environmental Geology
Credits 3
Application of basic geologic concepts to environmental problems: emphasis on geologic hazards, waste disposal, urban planning, resource policy issues, and environmental programs.
Prerequisites GEOL 672 or equivalent or consent of instructor.

GEOL 740 - Arid Zone Soils
Credits 3
The role soils have in the soil-plant-atmospheric continuum of arid regions, influence of arid zone soils on all aspects of plant growth and development, influence of soil forming factors on the development of arid soils.
Same as (BIO 745)
Prerequisites Consent of instructor.

GEOL 742 - Seminar in Volcanology
Credits 3
Analysis of current problems, concepts, and research in volcanology and closely related fields.
Prerequisites Graduate standing or consent of instructor.

GEOL 743 - Seminar in Planetary Geology
Credits 3
Analysis of current problems, concepts, and research in planetary geology with emphasis on newly available data.
Prerequisites Graduate standing or consent of instructor.

GEOL 744 - Tectonics and Structures
Credits 3
Analysis of upper crustal deformation with emphasis
on faulting, neotectonics and seismic interpretation; includes a group research project with field and literature data collection, analysis and results suitable for presentation at a professional conference.

Prerequisites Consent of instructor.

GEOL 745 - Advanced Structural Geology
Credits 3
Analysis of deformation of the Earth’s crust with emphasis on deformation mechanisms operative in rocks at different crustal levels; the geometry, kinematics, and dynamics of common geological structural associations, and mechanism and styles of deformation in orogenic belts.

Notes Three hours lecture per week.

Prerequisites GEOL 341 and GEOL 349.

GEOL 746 - Strain and Microstructural Analysis
Credits 4
Examination of the principles and techniques of finite and incremental strain analysis and their application to naturally deformed rocks. Investigation of plastic deformation processes and deformation mechanisms, and recognition and interpretation of microstructures developed during deformation.

Notes Three hours lecture, three hours laboratory.

Prerequisites GEOL 341 or consent of instructor.

GEOL 747 - Geological Evolution of Western North America
Credits 3
Study of the geological evolution of western North America. Emphasis on the stratigraphic, structural, and tectonic development of the continent within the framework of plate tectonics.

Notes Three hours lecture per week.

Prerequisites GEOL 223, GEOL 341, GEOL 462.

GEOL 749 - Advanced Geochronology and Thermochronology
Credits 3
Detailed discussion of isotopic dating of rocks with application to geologic problems. Diffusion theory and reconstruction of thermal histories of rocks. Includes surface exposure dating using cosmogenic isotopes, study of uranium series disequilibrium, luminescence, electron spin resonance, and 14c dating.

Prerequisites GEOL 426

GEOL 750 - Seminar in Paleobiology
Credits 3
Fossil record as a tool for understanding evolutionary processes, early history of life, eruptive radiation, mass extinction, macroevolution, and origin of higher taxa.

Prerequisites Graduate standing in geology or biology or consent of instructor.

GEOL 755 - Seminar in Paleontology
Credits 3
Special topics of current interest in paleontology, with emphasis on Great Basin fossil faunas.

Prerequisites Graduate standing in geology or biology or consent of instructor.

GEOL 760 - Advanced Spatial Modeling with GIS
Credits 4
Advanced study in computer-based techniques for storage, retrieval, analysis, and representation of spatially referenced data. Emphasis on development of spatially distributed models in the geosciences using Geographic Information System (GIS) technology. Students required to develop system models in their chosen thesis area.

Notes Three hours lecture and three hours lab.

Prerequisites GEOL 430 or GEOL 630.

GEOL 762 - Geological Applications of Computers
Credits 3
Use of computer algorithms to solve geological problems, geostatistics, modeling of geological processes.

Prerequisites Graduate standing and CS 116 and 169.

GEOL 765 - Seminar in Stratigraphy
Credits 3
Special topics in stratigraphy with emphasis on southern Nevada and adjacent regions.

Prerequisites Graduate standing or consent of instructor.

GEOL 766 - Earth Systems Change
Credits 3
Investigate long-term and short-term global climate changes, ocean redox evolution, and their impacts on biospheric innovations. Explore interactions between Earth's sub spheres (lithosphere, hydrosphere, atmosphere, and biosphere) during times of extreme...
environmental changes in Earth history and testing methods and techniques for such interactions.

Prerequisites Graduate standing or consent of instructor.

GEOL 770 - Sedimentary Basins
Credits 3
Analysis of current ideas concerning the plate tectonic setting and evolution of sedimentary basins. Emphasis on characteristic styles of basin sedimentation and resulting stratigraphic framework, provenance of basin fill, chronologic relationship of tectonic events and sedimentation, and methods of basin analysis.

Prerequisites Graduate standing or consent of instructor.

GEOL 772 - Reflection Seismic Data Interpretation
Credits 4
Fundamentals of geologic interpretation using seismic reflection data. Introduction to seismic data acquisition and processing. Interpretation techniques include well log to seismicities, contour maps and time-to-depth conversion. Interpretation of data from different structural settings, seismic stratigraphy, and 3-D seismic interpretation.

Notes Three hour lecture and three hour lab.

Prerequisites Graduate standing or consent of instructor.

GEOL 772L - Reflection Seismic Data Interpretation Laboratory
Credits 0
Lab course designed to supplement the lecture course. Interpretations of several structural regimes, structure contour maps, correlation using well logs, creation of synthetics, and the interpretation of a 3-D seismic data set.

Prerequisites Graduate standing or consent of instructor.

GEOL 773 - Seminar in Geophysics
Credits 1 – 3
Specialized topics in geophysics with an emphasis on current analysis techniques and problems.

Prerequisites Graduate standing or consent of instructor.

GEOL 775 - Seminar in Economic Geology
Credits 3
Analysis of current problems, concepts and research in economic geology and closely related fields.

Prerequisites GEOL 677 or equivalent or consent of instructor.

GEOL 776 - Paleosols Records of Past Landscapes
Credits 3
Recognition and analysis of soil horizons preserved in the rock record. Use of paleosols for reconstructing paleoclimates, tectonics, depositional environments, and other aspects of geologic history.

Prerequisites Graduate standing and GEOL 462 (or equivalent) or consent of instructor.

GEOL 777 - Instrumental Techniques in Geology
Credits 3
Use of modern instrumentation to acquire geological and geochemical data. Includes, but not limited to, the practical application of x-ray diffraction and fluorescence and atomic absorption spectrophotometry.

Notes Six hours laboratory.

Prerequisites Graduate standing or consent of instructor.

GEOL 779 - Theory of Ore Deposition
Credits 3
Study of physical and chemical processes which contribute to metal solubility, transport, and precipitation. Includes fundamental geochemical and thermodynamic concepts as they apply to ore and gangue mineral stability under various geologic conditions.

Prerequisites GEOL 426 and GEOL 477.

GEOL 780 - Terrigenous Depositional Systems
Credits 3
Examination of modern nonmarine and marine depositional environments dominated by terrigenous sediments, processes that operate in these settings, and responses of sediment to processes. Establish criteria for recognizing these environments and processes in ancient terrigenous sequences.

Prerequisites Graduate standing and GEOL 462 or consent of instructor.

GEOL 781 - Carbonate Depositional Systems
Credits 3
Examination of modern non-marine and marine depositional environments dominated by carbonate
sediments, organisms that produce sediments, processes that operate in these settings, and responses of sediment to the processes. Establish criteria for recognizing these environments and processes in ancient carbonate sequences.

Prerequisites
Graduate standing and GEOL 462 or consent of instructor.

GEOL 782 - Sandstone Petrology
Credits 4
Description, classification, and interpretation of terrigenous sedimentary rocks. Emphasis on petrographic methods applied to sandstones and interpretation of provenance of sedimentary sequences.

Prerequisites GEOL 780 (corequisite) or consent of instructor.

GEOL 783 - Carbonate Petrology
Credits 4
Study of the physical and chemical factors important in the genesis and diagenesis of carbonate sediments and rocks. Various analytical techniques covered, with emphasis on thin section petrography for deciphering rock components and diagenesis.

Prerequisites GEOL 781 (corequisite) or consent of instructor.

GEOL 785 - Seminar in Sedimentology
Credits 1 – 4
Analysis of current problems, concepts, and research in sedimentary geology and related fields. Emphasis may be upon the genesis and diagenesis of specific sedimentary sequences or upon particular depositional or diagenetic environments.

Prerequisites Graduate standing and either GEOL 780 or GEOL 781, or consent of instructor.

GEOL 786 - Soils Applications: Paleoclimate, Neotectonics, Archeology
Credits 3
Special topics of current interest in soil science with emphasis on the use of soils for applications in geomorphology, paleoclimate, neotectonics, and/or archeology.

Prerequisites Graduate standing in geology, biology, anthropology, or consent of instructor.

GEOL 787 - Thesis Research
Credits 1 – 6
Supervised research prior to approval of master's program prospectus.

Notes May be repeated to a maximum of six credits, but only one credit can be applied to the student's program.

Grading S/F grading only.

Prerequisites Enrollment in the M.S. Program.

GEOL 789 - Dissertation Research
Credits 1 – 6
Supervised research prior to advancement to candidacy in the doctoral program.

Notes May be repeated, but only two credits can be applied to the student's program.

Grading S/F grading only.

Prerequisites Enrollment in the doctoral program.

GEOL 792 - Seminar in Hydroscience
Credits 1 – 3
Specialized topics in hydroscience.

GEOL 793 - Independent Study and Research
Credits 1 – 3
Independent study and research projects in some field of geology. Proposed project for study must be submitted in writing to the graduate program coordinator and the department chair for approval and credit evaluation at least two weeks prior to registration.

Notes May be repeated for credit, but only three credits are permitted per instructor unless special permission is received.

Prerequisites Consent of instructor.

GEOL 794 - Directed Readings
Credits 1 – 3
Supervised readings on special topics in consultation with a geoscience graduate faculty member.

Notes May be repeated to a maximum of six credits. Requires consent of student's academic adviser.

Grading S/F grading only.

Prerequisites Admission to Geoscience Ph.D. program; Consent of instructor.

GEOL 795 - Poster Presentation and Time Management
Credits 1
Presentation of geological information in poster format and time management skills. Poster presentation includes layout and design, focus, data
versus interpretation, computer graphics, verbal presentation and referencing. Time management issues include scheduling, planning, organization, and productivity.

Notes Should be taken during first or second semester of graduate program.

Prerequisites Graduate standing in Geoscience.

GEOL 796 - Advanced Topics in Geoscience
Credits 1 – 3
Variety of advanced studies of current and/or topical interest in specialized areas of geoscience.

Notes May be repeated to a maximum of six credits.

Prerequisites Varies, depending upon the specific topic.

GEOL 797 - Thesis
Credits 1 – 6

Notes May be repeated, but only six credits applied to the student's program.

Grading S/F grading only.

Prerequisites Graduate standing and consent of instructor.

GEOL 799 - Dissertation
Credits 3 – 6

Research analysis and writing toward completion of dissertation and subsequent defense.

Notes Twelve credits are required for the degree, may be repeated, but only twelve credits will be applied to the student's degree program. May be repeated but only a maximum of 12 credits may be used in students degree program

Grading S/F grade.

Prerequisites Successful completion of qualifying examination and approval by department.

School of Life Sciences

The School of Life Sciences (SoLS) offers programs of studies leading to the Master of Science and Doctor of Philosophy degrees. Each degree requires a research thesis (M.S.) or dissertation (Ph.D.). Research leading to the M.S. and Ph.D. degrees may be conducted in one or more of the following fields: cellular and molecular biology; genetics; microbiology; bioinformatics; physiology; population, community, and ecosystem ecology; evolutionary biology; systematics; and biogeography. The School has well-equipped laboratories to support faculty and graduate student research. These facilities are enhanced through access to a number of specialized scientific resources, including the Nevada Genomics Center (which house state-of-the-art equipment that includes an RTPCR machine, an Amersham Typhoon imager, a microarray printer, hybridization capacity and scanner, and a DNA capillary sequencer); the UNLV Confocal and Biological Imaging Core (which houses a Nikon A1R confocal laser scanning microscope system); the Ecophysiological Research facility (which includes a greenhouse designed to support experiments at elevated levels of carbon dioxide); an AAALAC-accredited animal care facility; and regional natural history collections, including those of the Wesley E. Niles Herbarium and the Marjorie Barrick Museum. Investigators from the Nevada System of Higher Education's Desert Research Institute also participate in our graduate program. Numerous funding opportunities are available through state-funded graduate assistant programs via statewide initiatives or in association with individual faculty research programs. Prospective students should make contact with one or more faculty members to familiarize themselves with their current research interests, opportunities for conducting research projects, and funding availability. A list of faculty research interests and admission materials are available on line at the School's web site.

For details regarding application deadlines and the application review process, see the School of Life Sciences' *Graduate Student Handbook*, which is available at http://sols.unlv.edu/gradhandbook.html.
School Life Sciences Faculty

Director

Bazylinski, Dennis A. - Full Graduate Faculty
Professor; Ph.D., University of New Hampshire, Durham. Rebel since 2006.

Graduate Coordinator

Schiller, Martin - Full Graduate Faculty
Professor; Ph.D., Utah State University. Rebel Since 2009.

Graduate Faculty

Andres, Andrew J. - Full Graduate Faculty
Associate Professor; Ph.D., Indiana University, Bloomington. Rebel since 2002.

Caberoy, Nora B. - Full Graduate Faculty
Assistant Professor; B.S., University of the Philippines, Los Banos; M.S., University of the Philippines, Visayas; Ph.D., Washington State University. Rebel since 2012.

Devitt, Dale A. - Full Graduate Faculty
Professor; Ph.D., University of California, Riverside. Rebel since 2005.

Elekonich, Michelle M. - Full Graduate Faculty
Associate Professor; Ph.D., University of Washington, Seattle. Rebel since 2003.

Gibbs, Allen G. - Full Graduate Faculty
Professor; University of California, San Diego. Rebel since 2005.

Hedlund, Brian P. - Full Graduate Faculty
Associate Professor; Ph.D., University of Washington, Seattle. Rebel since 2003.

Lee, David V. - Full Graduate Faculty
Assistant Professor; Ph.D., University of Utah. Rebel since 2007.

Raftery, Laurel - Full Graduate Faculty
Associate Professor; A.B., University of California, Berkeley; Ph.D., University of Colorado, Boulder. Rebel since 2010
Reiber, Carl L. - Full Graduate Faculty
Professor; Ph.D., University of Massachusetts, Amherst. Rebel since 1993.

Riddle, Brett R. - Full Graduate Faculty
Professor; Ph.D., University of New Mexico, Albuquerque. Rebel since 1990.

Robleto, Eduardo A. - Full Graduate Faculty
Associate Professor; Ph.D., University of Wisconsin, Madison. Rebel since 2002.

Rodríguez-Robles, Javier A. - Full Graduate Faculty
Associate Professor; University of California, Berkeley. Rebel since 2002.

Schulte, Paul J. - Full Graduate Faculty
Associate Professor; Ph.D., University of Washington, Seattle. Rebel since 1990.

Shen, Jeffery Q. - Full Graduate Faculty
Full Professor; Ph.D., Washington University, St. Louis. Rebel since 2000.

Smith, Stanley D. - Full Graduate Faculty
Professor; Ph.D., Arizona State University, Tempe. Rebel since 1985.

Stark, Lloyd R. - Full Graduate Faculty
Associate Professor; Ph.D., Pennsylvania State University, University Park. Rebel since 1999.

Thompson, Daniel B. - Full Graduate Faculty
Associate Professor; Ph.D., University of Arizona, Tucson. Rebel since 1990.

Tseng, Ai-Sun - Full Graduate Faculty
Assistant Professor; Ph.D. Rebel since 2012.

Tsourkas, Philippos - Full Graduate Faculty
Assistant Professor; Ph.D. Rebel since 2012.

Van Breukelen, Frank - Full Graduate Faculty
Associate Professor; Ph.D., University of Colorado, Boulder. Rebel since 1990.

Walker, Lawrence R. - Full Graduate Faculty
Professor; Ph.D., University of Alaska, Fairbanks. Rebel since 1992.

Wing, Helen J. - Full Graduate Faculty
Associate Professor; Ph.D., University of Birmingham, Edgbaston, United Kingdom. Rebel since 2005.

Professors Emeriti

Babero, Bert B.
Emeritus Professor; Ph.D., University of Illinois. UNLV Emeritus 1965-1987.

Murvosh, Chad M.
Emeritus Professor; Ph.D., Ohio State University, Columbus. UNLV Emeritus 1964-1992.

Niles, Wesley E.
Emeritus Professor; Ph.D., University of Arizona, Tucson. UNLV Emeritus 1968-2002.

Yousef, Mohamed K.
Emeritus Distinguished Professor; Ph.D., University of Missouri. UNLV Emeritus 1968-1994.
Doctor of Philosophy - Biological Sciences

Plan Description

The School of Life Sciences (SoLS) offers a Ph.D. program in Cell and Molecular Biology, Ecology and Evolutionary Biology, Integrative Physiology, and Microbiology. This degree is research intensive and is designed to prepare students for careers in academia, government, or industry. Students complete a minimum of 60 credit hours from a list of core and approved courses within their section. In addition, students are typically a Teaching Assistant (TA) for at least one semester. It is expected that students will first-author at least one peer-reviewed journal article.

For more information about your program, including your graduate program handbook and learning outcomes please visit the Degree Directory.

Plan Admission Requirements

Applications available on the UNLV Graduate College website.

Applications for fall admission that are completed by the posted deadline will be given priority for state-funded graduate assistantships. Admission is based on a combination of criteria that may differ from one year to another, however, most successful applicants have a minimum of a 3.0 undergraduate grade point average (junior and senior years) and score in the upper 50th percentile on all sections of the GRE. Decisions for fall applicants will be made by April 1 if not sooner.

Applications are not considered complete unless they contain:

1. A completed SoLS application form.
2. A completed Graduate College Application with Official transcripts and three Letters of Recommendation.
3. Official GRE score report; subject GREs are not required.

All domestic and international applicants must review and follow the Graduate College Admission and Registration Requirements.

Students are accepted into a degree program as described in the Graduate Catalog. The faculty and corresponding sub-disciplines and sub-plans within the described programs are subject to change at any time.

Plan Requirements

See Subplan Requirements below.

Subplan 1 Requirements: Post-Bachelor's - Cellular and Molecular Biology Track

Total Credits Required: 60

Course Requirements

Required Course – Credit: 1

BIOL 701 - Ethics in Scientific Research

Core Courses – Credits: 9

Complete 9 credits from the following list of courses:

BIOL 607 - Molecular Biology
BIOL 625 - Genomics
BIOL 645 - Cell Physiology
CHEM 772 - Nucleic Acid Chemistry

Didactic Courses – Credits: 9

Complete 9 credits of advisor-approved didactic courses.

Seminar Course – Credits: 6

Complete 6 credits from any combination of the following courses:

BIOL 793A-D - Advanced Topics in Life Sciences
BIOL 796 A-D - Graduate Seminar

Elective Courses – Credits: 23

Complete 23 credits of advisor-approved independent study, colloquium, seminar, or didactic courses.

Dissertation – Credits: 12

BIOL 799 - Dissertation
Degree Requirements

1. Complete a minimum of 60 credit hours beyond the undergraduate degree. At least 24 of these hours (excluding dissertation) must be completed at the 700-level.
2. Dissertation credits may be repeated for credit as needed, but only 12 credits may be counted towards the 60 credit hour minimum graduation requirement.
3. Students must complete the specific didactic course work required. See SoLS's Graduate Student Handbook http://sols.unlv.edu/current.html for specific requirements.
4. Students may request a maximum of 15 graduate credits taken at UNLV prior to admission into SoLS's Graduate Program to be counted towards the 30 credit hour minimum graduation requirement, provided that those credits were not used to fulfill undergraduate requirements and that a minimum grade of "B" (3.00) was earned in each course.
5. Students should register for at least 9 credits each semester if they are receiving financial support from the School; otherwise they must register for at least 6 credits each semester. Students working on their dissertation must register for at least 3 credits each semester (excluding summer) until the Dissertation is completed and given final approval.
6. Students must confer with their Dissertation Advisor prior to enrollment in their first semester. The Advisor will assist with designing an initial graduate degree program (i.e., an outline of the courses that the student will complete for the degree), engage in discussions about possible research directions, and introduce the student to the personnel and resources of the School of Life Sciences.
7. The student must form an Advisory Committee before the department's posted deadline. This Committee will be composed by the Dissertation Advisor (who will serve as the Committee Chair), two members of SoLS's Graduate Faculty, and a Graduate Faculty Representative from UNLV (outside of SoLS). Students are encouraged to include a fifth Committee member who is an expert on the student's field of research. This fifth Committee member can have an academic affiliation outside of UNLV. See SoLS's Graduate Student Handbook http://sols.unlv.edu/current.html for specific requirements. Please see Graduate College policy for committee appointment guidelines.
8. Students must meet with their Advisory Committee at least once every year (i.e., from January to October), and a written report of this meeting must be submitted to SoLS's Graduate Operations Committee by November 1.
9. The Advisory Committee will review the student's past academic background and, taking into consideration the student's research interests, determine his/her definitive graduate degree program.
10. Students must comply with the deadlines indicated in SoLS's Graduate Student Handbook http://sols.unlv.edu/current.html for submitting required paperwork to the Graduate College.
11. Students must take the comprehensive examination before the beginning of their sixth semester of residency in the Graduate Program.
 a. The exam must be held at least three (3) weeks before the last day of instruction of any given term.
 b. The exam will include both a written and an oral component, and will assess whether the student has reached the appropriate level of knowledge and analytical skills necessary for his/her field of study.
 c. The examination is developed or administered by the Doctoral Advisory Committee or an ad hoc Committee composed of Graduate Faculty within the Section to which the student belongs.
 d. See SoLS's Graduate Student Handbook http://sols.unlv.edu/current.html for
information on the possible outcomes of the exam. Students who fail to pass the exam within the specified timeline will be placed on academic probation and will be allowed one retake of the exam.

e. Failure to pass the retake or meet the requirements of academic probation will result in separation.

12. Doctoral students are advanced to candidacy after passing their comprehensive examination. Specific curricular requirements for each SoLS Section are described in detail in SoLS's Graduate Student Handbook http://sols.unlv.edu/current.html.

13. Each doctoral student should teach for a minimum of two semesters in the undergraduate curriculum of the School of Life Sciences. During that time the student will receive a Graduate Teaching Assistantship.

14. A student will be placed on academic probation if a minimum 3.00 grade point average is not maintained in all work taken as part of the graduate degree program. A grade of "C+" or less in two graduate-level classes will cause a student to be placed on academic probation. Failure to meet the requirements of academic probation will result in separation.

15. The Ph.D. candidate will present a seminar on his/her dissertation work that is open to all interested parties, including the general public. This public seminar will be widely advertised at least seven (7) days before it takes place, and will be followed by an oral defense of the dissertation research before the Advisory Committee and any other Graduate Faculty member who wishes to attend.

Graduation Requirements

See Plan Graduation Requirements below.

Subplan 2 Requirements: Post-Bachelor's - Ecology and Evolutionary Biology Track

Total Credits Required: 60

Course Requirements

Required Course – Credit: 1

BIOL 701 - Ethics in Scientific Research

Didactic Courses – Credits: 18

Complete 18 credits of advisor-approved didactic courses.

Seminar Course – Credits: 6

Complete 6 credits from any combination of the following courses:

BIOL 793A-D - Advanced Topics in Life Sciences
BIOL 796 A-D - Graduate Seminar

Elective Courses – Credits: 23

Complete 23 credits of advisor-approved independent study, colloquium, seminar, or didactic courses.

Dissertation – Credits: 12

BIOL 799 - Dissertation

Degree Requirements

1. Complete a minimum of 60 credit hours beyond the undergraduate degree. At least 24 of these hours (excluding dissertation) must be completed at the 700-level.

2. Dissertation credits may be repeated for credit as needed, but only 12 credits may be counted towards the 60 credit hour minimum graduation requirement.

3. Students must complete the specific didactic course work required. See SoLS's Graduate Student Handbook http://sols.unlv.edu/current.html for specific requirements.

4. Students may request a maximum of 15 graduate credits taken at UNLV prior to admission into SoLS's Graduate Program to be counted towards the 30 credit hour minimum graduation requirement, provided that those credits were not used to fulfill undergraduate requirements and that a
minimum grade of "B" (3.00) was earned in each course.

5. Students should register for at least 9 credits each semester if they are receiving financial support from the School; otherwise they must register for at least 6 credits each semester. Students working on their dissertation must register for at least 3 credits each semester (excluding summer) until the Dissertation is completed and given final approval.

6. Students must confer with their Dissertation Advisor prior to enrollment in their first semester. The Advisor will assist with designing an initial graduate degree program (i.e., an outline of the courses that the student will complete for the degree), engage in discussions about possible research directions, and introduce the student to the personnel and resources of the School of Life Sciences.

7. The student must form an Advisory Committee before the department's posted deadline. This Committee will be composed by the Dissertation Advisor (who will serve as the Committee Chair), two members of SoLS's Graduate Faculty, and a Graduate Faculty Representative from UNLV (outside of SoLS). Students are encouraged to include a fifth Committee member who is an expert on the student's field of research. This fifth Committee member can have an academic affiliation outside of UNLV. See SoLS's Graduate Student Handbook http://sols.unlv.edu/current.html for specific requirements. Please see Graduate College policy for committee appointment guidelines.

8. Students must meet with their Advisory Committee at least once every year (i.e., from January to October), and a written report of this meeting must be submitted to SoLS's Graduate Operations Committee by November 1.

9. The Advisory Committee will review the student's past academic background and, taking into consideration the student's research interests, determine his/her definitive graduate degree program.

10. Students must comply with the deadlines indicated in SoLS's Graduate Student Handbook http://sols.unlv.edu/current.html for submitting required paperwork to the Graduate College.

11. Students must take the comprehensive examination before the beginning of their sixth semester of residency in the Graduate Program.
 a. The exam must be held at least three (3) weeks before the last day of instruction of any given term.
 b. The exam will include both a written and an oral component, and will assess whether the student has reached the appropriate level of knowledge and analytical skills necessary for his/her field of study.
 c. The examination is developed or administered by the Doctoral Advisory Committee or an ad hoc Committee composed of Graduate Faculty within the Section to which the student belongs.
 d. See SoLS's Graduate Student Handbook http://sols.unlv.edu/current.html for information on the possible outcomes of the exam. Students who fail to pass the exam within the specified timeline will be placed on academic probation and will be allowed one retake of the exam.
 e. Failure to pass the retake or meet the requirements of academic probation will result in separation.

12. Doctoral students are advanced to candidacy after passing their comprehensive examination. Specific curricular requirements for each SoLS Section are described in detail in SoLS's Graduate Student Handbook http://sols.unlv.edu/current.html.

13. Each doctoral student should teach for a minimum of two semesters in the undergraduate curriculum of the School of Life Sciences. During that time the student
will receive a Graduate Teaching Assistantship.

14. A student will be placed on academic probation if a minimum 3.00 grade point average is not maintained in all work taken as part of the graduate degree program. A grade of "C+" or less in two graduate-level classes will cause a student to be placed on academic probation. Failure to meet the requirements of academic probation will result in separation.

15. The Ph.D. candidate will present a seminar on his/her dissertation work that is open to all interested parties, including the general public. This public seminar will be widely advertised at least seven (7) days before it takes place, and will be followed by an oral defense of the dissertation research before the Advisory Committee and any other Graduate Faculty member who wishes to attend.

Graduation Requirements

See Plan Graduation Requirements below.

Subplan 3 Requirements: Post-Bachelor's - Integrative Physiology Track

Total Credits Required: 60

Course Requirements

Required Course – Credit: 1

BIOL 701 - Ethics in Scientific Research

Didactic Courses – Credits: 18

Complete 18 credits of advisor-approved didactic courses.

Seminar Course – Credits: 6

Complete 6 credits from any combination of the following courses:

BIOL 793A-D - Advanced Topics in Life Sciences
BIOL 796 A-D - Graduate Seminar

Elective Courses – Credits: 23

Complete 23 credits of advisor-approved independent study, colloquium, seminar, or didactic courses.

Dissertation – Credits: 12

BIOL 799 - Dissertation

Degree Requirements

1. Complete a minimum of 60 credit hours beyond the undergraduate degree. At least 24 of these hours (excluding dissertation) must be completed at the 700-level.

2. Dissertation credits may be repeated for credit as needed, but only 12 credits may be counted towards the 60 credit hour minimum graduation requirement.

3. Students must complete the specific didactic course work required. See SoLS's Graduate Student Handbook http://sols.unlv.edu/current.html for specific requirements.

4. Students may request a maximum of 15 graduate credits taken at UNLV prior to admission into SoLS's Graduate Program to be counted towards the 30 credit hour minimum graduation requirement, provided that those credits were not used to fulfill undergraduate requirements and that a minimum grade of "B" (3.00) was earned in each course.

5. Students should register for at least 9 credits each semester if they are receiving financial support from the School; otherwise they must register for at least 6 credits each semester. Students working on their dissertation must register for at least 3 credits each semester (excluding summer) until the Dissertation is completed and given final approval.

6. Students must confer with their Dissertation Advisor prior to enrollment in their first semester. The Advisor will assist with designing an initial graduate degree program (i.e., an outline of the courses that the student will complete for the degree), engage in discussions about possible research directions, and introduce the student to the personnel and resources of the School of Life Sciences.
7. The student must form an Advisory Committee before the department's posted deadline. This Committee will be composed by the Dissertation Advisor (who will serve as the Committee Chair), two members of SoLS's Graduate Faculty, and a Graduate Faculty Representative from UNLV (outside of SoLS). Students are encouraged to include a fifth Committee member who is an expert on the student's field of research. This fifth Committee member can have an academic affiliation outside of UNLV. See SoLS's Graduate Student Handbook http://sols.unlv.edu/current.html for specific requirements. Please see Graduate College policy for committee appointment guidelines.

8. Students must meet with their Advisory Committee at least once every year (i.e., from January to October), and a written report of this meeting must be submitted to SoLS's Graduate Operations Committee by November 1.

9. The Advisory Committee will review the student's past academic background and, taking into consideration the student's research interests, determine his/her definitive graduate degree program.

10. Students must comply with the deadlines indicated in SoLS's Graduate Student Handbook http://sols.unlv.edu/current.html for submitting required paperwork to the Graduate College.

11. Students must take the comprehensive examination before the beginning of their sixth semester of residency in the Graduate Program.

 a. The exam must be held at least three (3) weeks before the last day of instruction of any given term.

 b. The exam will include both a written and an oral component, and will assess whether the student has reached the appropriate level of knowledge and analytical skills necessary for his/her field of study.

 c. The examination is developed or administered by the Doctoral Advisory Committee or an ad hoc Committee composed of Graduate Faculty within the Section to which the student belongs.

 d. See SoLS's Graduate Student Handbook http://sols.unlv.edu/current.html for information on the possible outcomes of the exam. Students who fail to pass the exam within the specified timeline will be placed on academic probation and will be allowed one retake of the exam.

 e. Failure to pass the retake or meet the requirements of academic probation will result in separation.

12. Doctoral students are advanced to candidacy after passing their comprehensive examination. Specific curricular requirements for each SoLS Section are described in detail in SoLS's Graduate Student Handbook http://sols.unlv.edu/current.html.

13. Each doctoral student should teach for a minimum of two semesters in the undergraduate curriculum of the School of Life Sciences. During that time the student will receive a Graduate Teaching Assistantship.

14. A student will be placed on academic probation if a minimum 3.00 grade point average is not maintained in all work taken as part of the graduate degree program. A grade of "C+" or less in two graduate-level classes will cause a student to be placed on academic probation. Failure to meet the requirements of academic probation will result in separation.

15. The Ph.D. candidate will present a seminar on his/her dissertation work that is open to all interested parties, including the general public. This public seminar will be widely advertised at least seven (7) days before it takes place, and will be followed by an oral defense of the dissertation research before the Advisory Committee and any other Graduate Faculty member who wishes to attend.

Graduation Requirements
See Plan Graduation Requirements below.

Subplan 4 Requirements: Post-Bachelor's - Microbiology Track

Total Credits Required: 60

Course Requirements

Required Course – Credit: 1
BIOL 701 - Ethics in Scientific Research

Core Courses – Credits: 3
Complete 3 credits from the following list of courses:
BIOL 609 - Virology
BIOL 618 - Microbial Ecology
BIOL 653 - Immunology
BIOL 660 - Microbial Physiology
BIOL 664 - Bacterial Pathogenesis
BIOL 685 - Microbial Genetics

Didactic Courses – Credits: 15
Complete 15 credits of advisor-approved didactic courses.

Seminar Course – Credits: 6
Complete 6 credits from any combination of the following courses:
BIOL 793A-D - Advanced Topics in Life Sciences
BIOL 796 A-D - Graduate Seminar

Elective Courses – Credits: 23
Complete 23 credits of advisor-approved independent study, colloquium, seminar, or didactic courses.

Dissertation – Credits: 12
BIOL 799 - Dissertation

Degree Requirements

1. Complete a minimum of 60 credit hours beyond the undergraduate degree. At least 24 of these hours (excluding dissertation) must be completed at the 700-level.
2. Dissertation credits may be repeated for credit as needed, but only 12 credits may be counted towards the 60 credit hour minimum graduation requirement.
3. Students must complete the specific didactic course work required. See SoLS's Graduate Student Handbook http://sols.unlv.edu/current.html for specific requirements.
4. Students may request a maximum of 15 graduate credits taken at UNLV prior to admission into SoLS's Graduate Program to be counted towards the 30 credit hour minimum graduation requirement, provided that those credits were not used to fulfill undergraduate requirements and that a minimum grade of "B" (3.00) was earned in each course.
5. Students should register for at least 9 credits each semester if they are receiving financial support from the School; otherwise they must register for at least 6 credits each semester. Students working on their dissertation must register for at least 3 credits each semester (excluding summer) until the Dissertation is completed and given final approval.
6. Students must confer with their Dissertation Advisor prior to enrollment in their first semester. The Advisor will assist with designing an initial graduate degree program (i.e., an outline of the courses that the student will complete for the degree), engage in discussions about possible research directions, and introduce the student to the personnel and resources of the School of Life Sciences.
7. The student must form an Advisory Committee before the department’s posted deadline. This Committee will be composed by the Dissertation Advisor (who will serve as the Committee Chair), two members of SoLS's Graduate Faculty, and a Graduate Faculty Representative from UNLV (outside of SoLS). Students are encouraged to include a fifth Committee member who is an expert on the student’s field of research. This fifth Committee member can have an academic affiliation outside of UNLV. See
8. Students must meet with their Advisory Committee at least once every year (i.e., from January to October), and a written report of this meeting must be submitted to SoLS’s Graduate Operations Committee by November 1.

9. The Advisory Committee will review the student’s past academic background and, taking into consideration the student’s research interests, determine his/her definitive graduate degree program.

10. Students must comply with the deadlines indicated in SoLS’s Graduate Student Handbook http://sols.unlv.edu/current.html for submitting required paperwork to the Graduate College.

11. Students must take the comprehensive examination before the beginning of their sixth semester of residency in the Graduate Program.
 a. The exam must be held at least three (3) weeks before the last day of instruction of any given term.
 b. The exam will include both a written and an oral component, and will assess whether the student has reached the appropriate level of knowledge and analytical skills necessary for his/her field of study.
 c. The examination is developed or administered by the Doctoral Advisory Committee or an ad hoc Committee composed of Graduate Faculty within the Section to which the student belongs.
 d. See SoLS’s Graduate Student Handbook http://sols.unlv.edu/current.html for information on the possible outcomes of the exam. Students who fail to pass the exam within the specified timeline will be placed on academic probation and will be allowed one retake of the exam.
 e. Failure to pass the retake or meet the requirements of academic probation will result in separation.

12. Doctoral students are advanced to candidacy after passing their comprehensive examination. Specific curricular requirements for each SoLS Section are described in detail in SoLS’s Graduate Student Handbook http://sols.unlv.edu/current.html.

13. Each doctoral student should teach for a minimum of two semesters in the undergraduate curriculum of the School of Life Sciences. During that time the student will receive a Graduate Teaching Assistantship.

14. A student will be placed on academic probation if a minimum 3.00 grade point average is not maintained in all work taken as part of the graduate degree program. A grade of "C+" or less in two graduate-level classes will cause a student to be placed on academic probation. Failure to meet the requirements of academic probation will result in separation.

15. The Ph.D. candidate will present a seminar on his/her dissertation work that is open to all interested parties, including the general public. This public seminar will be widely advertised at least seven (7) days before it takes place, and will be followed by an oral defense of the dissertation research before the Advisory Committee and any other Graduate Faculty member who wishes to attend.

Graduation Requirements

See Plan Graduation Requirements below.

Subplan 5 Requirements: Post-Master's Track

Total Credits Required: 30

Course Requirements

Required Course – Credit: 1
BIOL 701 - Ethics in Scientific Research

Seminar Course – Credits: 6
Complete 6 credits from any combination of the following courses:

BIOL 793A-D - Advanced Topics in Life Sciences
BIOL 796 A-D - Graduate Seminar

Didactic Courses – Credits: 11
Complete 11 credits of advisor-approved didactic courses.

Dissertation – Credits: 12
BIOL 799 - Dissertation

Degree Requirements

1. Complete a minimum of 30 credit hours when entering the program with a master’s degree from another institution. At least 9 of these hours must be completed at the 700-level.

2. Dissertation may be repeated for credit as needed, but only 12 credits may be counted towards the 30 credit hour minimum graduation requirement.

3. Students must complete the didactic course work required by the Section (e.g., Ecology and Evolutionary Biology, Cell and Molecular Biology, Microbiology, and Integrative Physiology) to which they belong. See SoLS’s Graduate Student Handbook http://sols.unlv.edu/current.html for specific requirements.

4. Students may request a maximum of 15 graduate credits taken at UNLV prior to admission into SoLS’s Graduate Program to be counted towards the 30 credit hour minimum graduation requirement, provided that those credits were not used to fulfill undergraduate requirements and that a minimum grade of “B” (3.00) was earned in each course.

5. Students should register for at least nine (9) credits each semester if they are receiving financial support from the School; otherwise they must register for at least six (6) credits each semester. Students working on their dissertation must register for at least three (3) credits each semester (excluding summer) until the Dissertation is completed and given final approval.

6. Students must confer with their Dissertation Advisor prior to enrollment in their first semester. The Advisor will assist with designing an initial graduate degree program (i.e., an outline of the courses that the student will complete for the degree), engage in discussions about possible research directions, and introduce the student to the personnel and resources of the School of Life Sciences.

7. The student must form an Advisory Committee before the department’s posted deadline. This Committee will be composed by the Dissertation Advisor (who will serve as the Committee Chair), two members of SoLS’s Graduate Faculty, and a Graduate Faculty Representative from UNLV (outside of SoLS). Students are encouraged to include a fifth Committee member who is an expert on the student’s field of research. This fifth Committee member can have an academic affiliation outside of UNLV. See SoLS’s Graduate Student Handbook http://sols.unlv.edu/current.html for specific requirements. Please see Graduate College policy for committee appointment guidelines.

8. Students must meet with their Advisory Committee at least once every year (i.e., from January to October), and a written report of this meeting must be submitted to SoLS’s Graduate Operations Committee by November 1.

9. The Advisory Committee will review the student’s past academic background and, taking into consideration the student’s research interests, determine his/her definitive graduate degree program.

10. Students must comply with the deadlines indicated in SoLS’s Graduate Student Handbook http://sols.unlv.edu/current.html for submitting required paperwork to the Graduate College.
11. Students must take the comprehensive examination before the beginning of their sixth semester of residency in the Graduate Program.

 1. The exam must be held at least three (3) weeks before the last day of instruction of any given term.
 2. The exam will include both a written and an oral component, and will assess whether the student has reached the appropriate level of knowledge and analytical skills necessary for his/her field of study.
 3. The examination is developed or administered by the Doctoral Advisory Committee or an ad hoc Committee composed of Graduate Faculty within the Section to which the student belongs.
 4. See SoLS's Graduate Student Handbook http://sols.unlv.edu/current.html for information on the possible outcomes of the exam. Students who fail to pass the exam within the specified timeline will be placed on academic probation and will be allowed one retake of the exam.
 5. Failure to pass the retake or meet the requirements of academic probation will result in separation.

12. Doctoral students are advanced to candidacy after passing their comprehensive examination. Specific curricular requirements for each SoLS Section are described in detail in SoLS's Graduate Student Handbook http://sols.unlv.edu/current.html.

13. Each doctoral student should teach for a minimum of two semesters in the undergraduate curriculum of the School of Life Sciences. During that time the student will receive a Graduate Teaching Assistantship.

14. A student will be placed on academic probation if a minimum 3.00 grade point average is not maintained in all work taken as part of the graduate degree program. A grade of "C+" or less in two graduate-level classes will cause a student to be placed on academic probation. Failure to meet the requirements of academic probation will result in separation.

15. The Ph.D. candidate will present a seminar on his/her dissertation work that is open to all interested parties, including the general public. This public seminar will be widely advertised at least seven (7) days before it takes place, and will be followed by an oral defense of the dissertation research before the Advisory Committee and any other Graduate Faculty member who wishes to attend.

Graduation Requirements

See Plan Graduation Requirements below.

Plan Graduation Requirements

1. The student must submit all required forms to the Graduate College and then apply for graduation up to two semesters prior to completing his/her degree requirements.

2. The student must submit and successfully defend his/her dissertation by the posted deadline. The defense must be advertised and is open to the public.

3. The student must submit his/her approved, properly formatted hard-copy dissertation to the Graduate College, and submit the approved electronic version to ProQuest by the posted deadline.
Master of Science - Biological Sciences

Plan Description

The School of Life Sciences offers an M.S. program with concentrations in Cell and Molecular Biology, Ecology and Evolutionary Biology, Integrative Physiology, and Microbiology. This degree is less research intensive than the Ph.D. and is designed to prepare students for a diverse set of science-related careers.

For more information about your program, including your graduate program handbook and learning outcomes please visit the Degree Directory.

Plan Admission Requirements

Applications available on the UNLV Graduate College website.

Applications for fall admission that are completed by the posted deadline will be given priority for state-funded graduate assistantships. Admission is based on a combination of criteria that may differ from one year to another, however, most successful applicants have a minimum of a 3.0 undergraduate grade point average (junior and senior years) and score in the upper 50th percentile on all sections of the GRE. Decisions for fall applicants will be made by April 1 if not sooner.

Please note that the M.S. and Ph.D. degrees from the School of Life Sciences (SoLS) are research degrees. Applicants must look through the faculty web pages to identify one or more potential mentors as part of their application. They are required to contact these faculty directly regarding the possibility of joining their lab.

Applications are not considered complete unless they contain:

1. A completed SoLS application form.
2. A completed Graduate College Application with Official transcripts and two Letters of Recommendation.
3. Official GRE score report; subject GREs are not required.

All domestic and international applicants must review and follow the Graduate College Admission and Registration Requirements.

Students are accepted into a degree program as described in the Graduate Catalog. The faculty and corresponding sub-disciplines and sub-plans within the described programs are subject to change at any time.

Plan Requirements

See Subplan Requirements below.

Subplan 1 Requirements: Cellular and Molecular Biology Track

Total Credits Required: 30

Course Requirements

Required Course – Credits: 1
BIOL 701 - Ethics in Scientific Research

Core Courses – Credits: 6
Complete 6 credits from the following list of courses:
BIOL 607 - Molecular Biology
BIOL 625 - Genomics
BIOL 645 - Cell Physiology
CHEM 772 - Nucleic Acid Chemistry

Didactic Course – Credits: 3
Complete 3 credits of an advisor-approved didactic course.

Seminar Course – Credits: 6
Complete 6 credits from any combination of the following courses:
BIOL 793A-D - Advanced Topics in Life Sciences
BIOL 796 A-D - Graduate Seminar

Elective Courses – Credits: 8
Complete 8 credits of advisor-approved independent study, colloquium, seminar, core, or didactic courses.

Thesis – Credits: 6

BIOL 797 - Thesis

Degree Requirements

See Plan Degree Requirements below.

Graduation Requirements

See Plan Graduation Requirements below.

Subplan 2 Requirements: Ecology and Evolutionary Biology Track

Total Credits Required: 30

Course Requirements

Required Course – Credits: 1

BIOL 701 - Ethics in Scientific Research

Didactic Courses – Credits: 9

Complete 9 credits of advisor-approved didactic courses.

Seminar Course – Credits: 6

Complete 6 credits from any combination of the following courses:

- BIOL 793A-D - Advanced Topics in Life Sciences
- BIOL 796 A-D - Graduate Seminar

Elective Courses – Credits: 8

Complete 8 credits advisor-approved independent study, colloquium, seminar, or didactic courses.

Thesis – Credits: 6

BIOL 797 - Thesis

Degree Requirements

See Plan Degree Requirements below.

Graduation Requirements

See Plan Graduation Requirements below.

Subplan 3 Requirements: Integrative Physiology Track

Total Credits Required: 30

Course Requirements

Required Course – Credits: 1

BIOL 701 - Ethics in Scientific Research

Didactic Courses – Credits: 12

Complete 12 credits of advisor-approved didactic courses.

Seminar Course – Credits: 6

Complete 6 credits from any combination of the following courses:

- BIOL 793A-D - Advanced Topics in Life Sciences
- BIOL 796 A-D - Graduate Seminar

Elective Courses – Credits: 5

Complete 5 credits of advisor-approved independent study, colloquium, seminar, or didactic courses.

Thesis – Credits: 6

BIOL 797 - Thesis

Degree Requirements

See Plan Degree Requirements below.

Graduation Requirements

See Plan Graduation Requirements below.

Subplan 4 Requirements: Microbiology Track

Total Credits Required: 30

Course Requirements

Required Course – Credits: 1

BIOL 701 - Ethics in Scientific Research
Core Courses – Credits: 3

Complete one of the following courses:

- BIOL 609 - Virology
- BIOL 618 - Microbial Ecology
- BIOL 653 - Immunology
- BIOL 660 - Microbial Physiology
- BIOL 664 - Bacterial Pathogenesis
- BIOL 685 - Microbial Genetics

Didactic Courses – Credits: 6

Complete 6 credits of advisor-approved didactic courses.

Seminar Course – Credits: 6

Complete 6 credits from any combination of the following courses:

- BIOL 793A-D - Advanced Topics in Life Sciences
- BIOL 796 A-D - Graduate Seminar

Elective Courses – Credits: 8

Complete 8 credits of independent study, colloquium, seminar, core, or didactic courses.

Thesis – Credits: 6

BIOL 797 - Thesis

Degree Requirements

See Plan Degree Requirements below.

Graduation Requirements

See Plan Graduation Requirements below.

Plan Degree Requirements

1. Complete a minimum of 30 credit hours beyond the undergraduate degree. At least 18 of these hours must be completed at the 700-level.

2. Students may request a maximum of 15 graduate credits taken at UNLV prior to admission into SoLS's Graduate Program to be counted towards the 30 credit hour minimum graduation requirement, provided that those credits were not used to fulfill undergraduate requirements and that a minimum grade of "B" (3.00) was earned in each course.

3. At least 50 percent of the total credits required to complete the Master's degree must be earned at UNLV after admission into the Graduate Program.

4. Students should register for at least nine (9) credits each semester if they are receiving financial support from SoLS; otherwise, they must register for at least six (6) credits each semester. Students working on their thesis must register for at least three (3) credits each semester (excluding summer) until the Master's Thesis is completed and given final approval.

5. Students must confer with their Thesis Advisor prior to enrollment in their first semester. The Advisor will assist with designing an initial graduate degree program (i.e., an outline of the courses that the student will complete for the degree), engage in discussions about possible research directions, and introduce the student to the personnel and resources of the School of Life Sciences.

6. Students must form an Advisory Committee before the department's posted deadline. This Committee will be composed of the Thesis Advisor (who will serve as the Committee Chair), two members of SoLS's Graduate Faculty, and a Graduate Faculty Representative from UNLV (but outside of SoLS). An additional committee member may be added at the student and department's discretion. Please see Graduate College policy for committee appointment guidelines.

7. Students must meet with their Advisory Committee at least once every year (i.e., from January to October), and a written report of this meeting must be submitted to SoLS's Graduate Operations Committee by November 1.

8. The Advisory Committee will review the student's past academic background and, taking into consideration the student's
research interests, determine his/her definitive graduate degree program.

9. Students must comply with the deadlines indicated in SoLS's Graduate Student Handbook
http://sols.unlv.edu/gradhandbook.html for submitting required paperwork to the Graduate College.

10. A student will be placed on academic probation if a minimum 3.00 grade point average is not maintained in all work taken as part of the graduate degree program. A grade of "C+" or less in two graduate-level classes will cause a student to be placed on academic probation.

11. The M.S. candidate will present a seminar on his/her thesis work that is open to all interested parties, including the general public. This public seminar will be widely advertised at least seven (7) days before it takes place, and will be followed by an oral defense of the thesis research before the Advisory Committee and any other Graduate Faculty member who wishes to attend.

12. Students are expected to complete all the requirements for the Master's degree in 2-3 years.

Plan Graduation Requirements

1. The student must submit all required forms to the Graduate College and then apply for graduation up to two semesters prior to completing his/her degree requirements.

2. The student must submit and successfully defend his/her thesis by the posted deadline. The defense must be advertised and is open to the public.

School of Life Sciences Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 602</td>
<td>Great Biological Discoveries</td>
<td>3</td>
<td>Students will critically examine ~25 of the most important biological discoveries of all time and learn to examine data, develop hypotheses, identify valid conclusions, challenge interpretations of results, and discuss significance. The course will help students identify the origins of biological fields and develop a "big picture" view of biology.</td>
</tr>
<tr>
<td></td>
<td>Prerequisites</td>
<td></td>
<td>Consent of instructor.</td>
</tr>
<tr>
<td>BIOL 604</td>
<td>Principles of Neurobiology</td>
<td>3</td>
<td>This course is crosslisted with BIOL 404. Credit at the 600 level requires additional work.</td>
</tr>
<tr>
<td>BIOL 607</td>
<td>Molecular Biology</td>
<td>3</td>
<td>Introductory molecular biology. Study of genes and their activities at the molecular level, including transcription, translation, DNA replication, and recombination. Concepts of molecular biology presented along with experimental strategies and data the led to those concepts.</td>
</tr>
<tr>
<td></td>
<td>Notes</td>
<td></td>
<td>This course is crosslisted with BIOL 405. Credit at the 600 level requires additional work.</td>
</tr>
<tr>
<td>BIOL 609</td>
<td>Virology</td>
<td>3</td>
<td>Systematic examination of animal, plant, and bacterial viruses including their structure and genome organization, their reproduction and assembly, and their effects on host organisms.</td>
</tr>
<tr>
<td></td>
<td>Notes</td>
<td></td>
<td>This course is crosslisted with BIOL 409. Credit at the 600-level requires additional work.</td>
</tr>
<tr>
<td>BIOL 611</td>
<td>Molecular Evolution</td>
<td></td>
<td>Graduate credit may be obtained for courses designated 600 or above. A full description of this course may be found in the Undergraduate Catalog under the corresponding 400 number.</td>
</tr>
<tr>
<td></td>
<td>Notes</td>
<td></td>
<td>Credit at the 600 level normally requires additional work.</td>
</tr>
<tr>
<td>BIOL 616</td>
<td>Bioinformatics</td>
<td>3</td>
<td>This class covers basic principles in bioinformatics,</td>
</tr>
</tbody>
</table>

998 University of Nevada, Las Vegas
as well as Perl programming, algorithms, databases, and use of many bioinformatics resources. In class "laboratory" exercises reinforce these topics with hands-on activities and individual/group learning exercises. The class emphasizes a conceptual and practical understanding of bioinformatics applied to biological systems at the molecular, cellular, and organismal level.

Prerequisites Consent of instructor.

BIOL 618 - Microbial Ecology
Study of microbes as individuals, populations, and communities in freshwater, marine, and terrestrial environments. Topics such as nutrient cycling, biodegradation, and biotechnology discussed from an ecological standpoint.

Notes This course is crosslisted with BIOL 418. Credit at the 600-level requires additional work.

BIOL 622 - Taxonomy of Vascular Plants
Study of the evolutionary relationships of the principal orders, families and genera; systems of classification; collection and identification of local flora.

Notes This course is crosslisted with BIOL 422. Credit at the 600-level requires additional work.

BIOL 625 - Genomics
Study of the sequencing, assembling and annotating of genomes. Examination of new approaches that integrate genetics, molecular biology, and computer sciences to answer biological questions in novel ways. Applications of genomics, proteomic and bioinformatic technologies in medical researches.

Notes This course is crosslisted with BIOL 425. Credit at the 600-level requires additional work.

BIOL 626 - Plant Anatomy
Study of the basic structure of plant organs and tissues, particularly with regard to relationships between structure and function.

Notes This course is crosslisted with BIOL 426. Credit at the 600-level requires additional work.

BIOL 631 - Ichthyology
Study of biology of fishes, including morphology, physiology, ecology, and evolution. Emphasis on local fish, field work with state and federal agency biologists.

Notes This course is crosslisted with BIOL 431. Credit at the 600-level requires additional work.

BIOL 632 - Herpetology
Introduction to various aspects of the ecology, behavior, and evolution of recent amphibians and non-avian reptiles. In the laboratory students will learn diagnostic characteristics, some functional attributes, and aspects of the natural history of recent amphibians and non-avian reptiles, particularly of species from southwestern North America.

Notes This course is crosslisted with BIOL 432. Credit at the 600-level requires additional work.

BIOL 633 - Ornithology
Principles of avian biology and evolution.

Notes This course is crosslisted with BIOL 433. Credit at the 600-level requires additional work.

BIOL 634 - Mammalogy
Credits 4
Study of mammalian biology, evolution, and ecology, with attention to issues in mammal conservation biology. Three hours lecture and three hours laboratory with possible weekend and overnight field trips.

Notes This course is crosslisted with BIOL 434. Credit at the 600 level requires additional work.

BIOL 638 - Soil Plant Water Relations in Arid Environments
Credits 3
The class will cover soil plant water relationships relevant to arid environments under limited water resources. Topics that will be discussed in detail include: the hydrologic cycle, water properties, soil physical and chemical properties, environmental demand, plant stress associated with drought and salinity, water quality and irrigation management as it relates to plant growth and productivity. The class will be taught in a lecture/lab format.

Notes This course is crosslisted with BIOL 438. Credit at the 600-level requires additional work.

BIOL 641 - Field Ecology
Introduction to ecological research. Weekly field projects emphasize population biology, interactions among species, and ecosystem processes.
Notes This course is crosslisted with BIOL 441. Credit at the 600-level requires additional work.

BIOL 642 - Principles of Plant Physiology
Credits 4
Introduction to the basic physiological processes in plants: metabolism, nutrition, growth, and development.

Notes This course is crosslisted with BIOL 442. Credit at the 600 level requires additional work.

BIOL 644 - Principles of Plant Ecology
Credits 3
Introduction to the ecology of wild plants, particularly structure, ecology of populations, interactions of plants with their environment and other organisms, and survey of the major global vegetation types.

Notes This course is crosslisted with BIOL 444. Credit at the 600 level requires additional work.

BIOL 645 - Cell Physiology
Credits 3
Cell physiology provides an understanding of the basic processes of eukaryotic cells and their relationship to cellular ultrastructure.

Notes This course is crosslisted with BIOL 445. Credit at the 600 level requires additional work.

Prerequisites Consent of instructor.

BIOL 647 - Comparative Animal Physiology
Credits 4
Comparative physiology provides a detailed understanding of the diverse array of physiological systems evolved to allow animals to function in various environments. The comparative approach is used to understand physiological adaptations to various environments and the evolution of physiological systems.

Notes This course is crosslisted with BIOL 447. Credit at the 600 level requires additional work.

BIOL 648 - Endocrinology
Credits 3
Survey of the structure and function of vertebrate endocrine systems, with emphasis on the biochemical basis of hormone action and the role of cell communication in endocrine physiology.

Notes This course is crosslisted with BIOL 414. Credit at the 600 level requires additional work.

BIOL 651 - Comparative Vertebrate Anatomy Laboratory
Credits 2
The companion laboratory course of BIOL 655. Hands-on dissection of specimens representing major vertebrate groups. Numerous demonstration specimens sample the diversity of fishes, amphibians, and amniotes. Review of fossil vertebrates with emphasis on phylogenetic relationships.

Notes This course is crosslisted with BIOL 451. Credit at the 600-level requires additional work.

Prerequisites Biology degree or consent of instructor.

Corequisite BIOL 655

BIOL 653 - Immunology
Credits 3
Study of the immune response, cell-mediated and humoral. Topics include the diversity of antibodies and antigen receptors, evolution of immunity, cell-cell interactions, importance of major histocompatibility complex immune regulation, and immunity to microorganisms.

Notes This course is crosslisted with BIOL 453. Credit at the 600-level requires additional work.

BIOL 655 - Comparative Vertebrate Anatomy and Biomechanics
Credits 3
Examines structure-function relationships in the context of vertebrate evolution. Tissues and structures of the integumentary, skeletal, and muscular system are emphasized. Biomechanics of materials, structures, and movements are related to adaptations of vertebrates to life in their physical worlds.

Prerequisites Biology degree or consent of instructor.

Corequisite BIOL 651

BIOL 660 - Microbial Physiology
Credits 4
Exploration of the major aspects of microbial physiology, including structure and growth of bacteria, generation of ATP and intermediary metabolism, synthesis of macromolecules and cellular components, and coordination of intracellular activities.
Notes This course is crosslisted with BIOL 460. Credit at the 600 level requires additional work.

BIOL 664 - Bacterial Pathogenesis
Credits 3
Addresses the molecular mechanisms by which bacterial pathogens cause disease. Basic principles of bacterial pathogenesis will be considered before a survey of bacterial pathogens and their specific virulence factors is conducted. Includes aspects of bacterial genetics, physiology, immunology, and the cell biology of host-parasite interactions.
Notes This course is crosslisted with BIOL 464. Credit at the 600 level requires additional work.

Prerequisites BIOL 351 or equivalent microbiology class.

BIOL 665 - Vertebrate Embryology
Credits 4
Development of vertebrates, with emphasis on amphibians, birds, and mammals. Considerations of gametogenesis, fertilization, cleavage, early morphogenesis, and organogenesis included.
Notes This course is crosslisted with BIOL 465. Credit at the 600-level requires additional work.

BIOL 668 - Histology
Credits 4
Microscopic structure and function of vertebrate tissues with emphasis on mammals.
Notes This course is crosslisted with BIOL 468. Credit at the 600-level requires additional work.

BIOL 670 - Topics in Applied Microbiology
Credits 3
Applications may include bioremediation, food, agriculture, pharmaceuticals, vaccine development, water treatment, or genetic engineering. Presentation and discussion of current literature. Topics published in the class schedule. Maximum of two different topics may be selected for a total of six credits.
Notes This course is crosslisted with BIOL 470. Credit at the 600 level requires additional work.

BIOL 671 - Aquatic Ecology
Credits 3
Principles of aquatic ecology including physical, chemical and biotic attributes - and their interactions - relating to both freshwater and marine systems.

Notes This course is crosslisted with BIOL 471. Credit at the 600 level requires additional work.

BIOL 672 - Limnology
Credits 4
Notes Credit at the 600 level requires additional work.

BIOL 680 - Introduction to Biological Modeling
Credits 3
Introduction to the modeling of biological systems and processes through the use of computers.
Notes This course is crosslisted with BIOL 480. Credit at the 600-level requires additional work.

BIOL 685 - Microbial Genetics
Credits 4
Examines genetics of prokaryotic microorganisms, including induction of mutations and selection of mutants, alternative processes of genetic exchange and gene mapping, and gene organization and regulation.
Notes This course is crosslisted with BIOL 485. Credit at the 600-level requires additional work.

BIOL 687 - Principles of Systematics
Credits 3
Principles and applications of methods used to reconstruct history and biotic diversity among genes, species, and higher taxa. Considers several approaches to tree construction and significance of phylogenetic history within the context of evolution, biogeography, and conservation biology.
Notes This course is crosslisted with BIOL 487. Credit at the 600-level requires additional work.

BIOL 689 - Developmental Genetics
Credits 3
Topics in molecular genetics of developmental processes explored through current literature.
Notes This course is crosslisted with BIOL 489. Credit at the 600 level requires additional work.

BIOL 690 - Biogeography
Credits 3
Study of distributional patterns of plant and animal groups, including consideration of theories and principles, derived from a variety of disciplines, related to those patterns.
Notes This course is crosslisted with BIOL 490. Credit at the 600 level requires additional work.

BIOL 701 - Ethics in Scientific Research
Credits 2
Examination of ethical issues in scientific research, including research design, planning, and support; data manipulation and accessibility; publication practices and authorship; peer review; and scientific misconduct.
Prerequisites Graduate standing or consent of instructor

BIOL 703 - Biochemical Genetics
Credits 3
Prerequisites BIO 300 and CHEM 471.

BIOL 705 - Secondary Education: Teaching Evolution and the Nature of Science
Credits 1 – 3
Focus on Science and Creationism and hands-on activities and inquiry-based computer simulations that can be used in classrooms to illustrate evolutionary principles. Workshop taught using scientific methods so educators are well-versed in methods of evolutionary study and principles.
Notes Follow up sessions explore implementations of lessons from workshop.

BIOL 711 - Advanced Eukaryotic Genetics
Credits 3
Focuses on the biology and genetics of common model organisms: C. elegans, Drosophila, Arabidopsis, Zebrafish, and mouse, and their relationship to the biology of human health and agriculture. The goal is help students understand current research topics in functional genetics and genome manipulation.
Prerequisites Consent of instructor.

BIOL 714 - Population Genetics
Credits 3
Examines the interactions of evolutionary processes, such as natural selection, genetic drift, gene flow, and mutation, and effects of these interactions on population differentiation, speciation, and extinction.

Theoretical and empirical approaches to the study of DNA substitutions and quantitative genetic change addressed.

Prerequisites MATH 181 and BIO 310 or consent of instructor.

BIOL 722 - Advanced Taxonomy of Vascular Plants
Credits 3
Identification, classification, and evolutionary relationships of the subfamilies and tribes of the composite, legume, and grass families.
Notes Three hours laboratory.

Prerequisites BIO 422

BIOL 730A-D - Special Lectures in Life Sciences
Credits 3
Reserved for formal didactic classes with varying special current topics in different disciplines of life sciences. Lettering system reflects focus on topics specific for each Section within Life Sciences (A = Ecology and Evolution, B = Organismal Physiology, C = Cell and Molecular Biology, D = Microbiology).
Notes May be repeated to a maximum of nine credits.

Prerequisites Consent of instructor.

BIOL 742 - Topics in Advanced Plant Physiology
Credits 2
Advanced treatment of current topics in plant physiology. Topics for consideration selected from one of the three following major subject areas: (a) Water relations, ion balance, and mineral nutrition; (b) Photosynthesis, intermediary metabolism, and plant growth; and (c) Stress physiology. Instructor and students decide which area covered during a given semester.
Notes May be repeated to a maximum of six credits.

Prerequisites BIO 442

BIOL 743 - Ecological Plant Physiology
Credits 3
Examination of the physiological responses and adaptations of terrestrial plants to their environment. Primary topics covered include microclimate analysis, water relations, gas exchange, nutrient relations, and adaptations to stress. Adaptations of plants from contrasting physical environments emphasized.
Prerequisites BIO 340 and BIO 442.
BIOL 745 - Arid Zone Soils
Credits 3
Role soils have in the soil-plant-atmospheric continuum of arid regions, influence of arid zone soils on all aspects of plant growth and development, influence of soil forming factors on the development of arid soils.

Same as GEOL 740

Prerequisites Consent of instructor.

BIOL 748 - Environmental Physiology
Credits 3
Examination of physiological responses, including adaptation and acclimatization to extreme physical environments. Consideration of desert, tropical, arctic, mountain, and aquatic environments and their physiology, ecological, and phylogenetic implications.

BIOL 749 - Environmental Physiology
Credits 3
Examination of physiological responses, including adaptation and acclimatization to extreme physical environments. Consideration of desert, tropical, arctic, mountain, and aquatic environments and their physiology, ecological, and phylogenetic implications.

BIOL 763 - Vertebrate Reproductive Biology
Credits 3
Study of vertebrate reproduction at the systematic, organismal and population levels. Individual or group projects.

Prerequisites BIOL 350, 448 or 465, and consent of instructor.

BIOL 781 - Population and Evolutionary Ecology
Credits 3
Advanced topics in population growth, population interaction and evolution in ecological systems. Includes reading and class discussion of both theoretical and empirical material with emphasis on individual student analysis and integration.

Notes Three hours of lecture and discussion.

Prerequisites BIO 340 or equivalent and consent of instructor.

BIOL 782 - Community and Ecosystem Ecology
Credits 3
Readings and evaluation of the highest levels of organization in ecology through: a) exploration of the fundamental concepts of community distributions, structure, organization, and change; and b) analysis of ecosystem-level processes of primary and secondary production and nutrient cycling.

Prerequisites BIO 340 or equivalent and consent of instructor.
Notes: May be repeated to a maximum of nine credits.

Prerequisites: Consent of instructor.

BIOL 791 - Research Laboratory Discussions in Life Sciences
Credits 1-2
Students present their research and discuss the work of colleagues during formal laboratory meetings with their mentor's research group.

Notes: May be repeated to a maximum of ten credits.

Prerequisites: Consent of instructor.

BIOL 792 - Advanced Topics in Cell and Molecular Biology
Credits 1 – 3
Includes papers, oral presentations and discussion of current literature in these fields.

Notes: Topics announced with each offering. May be repeated to a maximum of twelve credits.

Prerequisites: Graduate standing and consent of instructor.

BIOL 793A-D - Advanced Topics in Life Sciences
Credits 1 – 2
A seminar-style class where presentations are organized around a common theme. Students present and discuss the related primary literature. Lettering system reflects focus on topics specific for each Section within Life Sciences (A = Ecology and Evolution, B = Organismal Physiology, C = Cell and Molecular Biology, D = Microbiology).

Notes: May be repeated to a maximum of six credits.

Prerequisites: Consent of instructor.

BIOL 794 - Techniques in Molecular Biology
Credits 3
Introduction to the theory and laboratory methods used in molecular biology research. Topics include the isolation and purification of nucleic acids, restriction digests, cloning, Southern blotting, PCR, DNA sequencing, and electrophoresis.

Notes: Three to nine laboratory hours per week.

Prerequisites: Consent of instructor.

BIOL 795 - Teaching Strategies for University Science Courses
Credits 2
Designed for graduate students in the sciences and will prepare you for University-level science teaching, whether pursuing a research-based or teaching-based faculty position. We explore different learning theories, current research about learning science and applying them to teaching and the development of a personal teaching philosophy.

BIOL 796 A-D - Graduate Seminar
Credits 1 – 2
Instructs students on how to prepare and present seminars on topics of current interest in life sciences. Lettering system reflects focus on topics specific for each Section within Life Sciences (A = Ecology and Evolution, B = Organismal Physiology, C = Cell and Molecular Biology, D = Microbiology).

Notes: May be repeated to a maximum of ten credits.

Prerequisites: Graduate standing and consent of instructor.

BIOL 797 - Thesis
Credits 3 – 6
Notes: May be repeated but only six credits applied to the student's program. Enrollment by consent of instructor only.

Grading: S/F grading only.

BIOL 799 - Dissertation
Credits 3 – 6
Research analysis and writing toward completion of dissertation and subsequent defense.

Notes: May be repeated but a maximum of only 18 credits may be applied to the degree program.

Grading: S/F grading only.

Prerequisites: Graduate standing in the Biology Ph.D. program and consent of instructor.
Mathematical Sciences

The Department of Mathematical Sciences offers both the Master of Science and Doctor of Philosophy degrees. The M.S. program has areas of concentration in Pure Mathematics, Applied Mathematics, Applied Statistics, and Teaching Mathematics. The Ph.D. program has areas of concentration in Applied Mathematics, Computational Mathematics, Pure Mathematics, and Statistics. Specific disciplines include approximation theory, applied complex analysis, bioinformatics, biostatistics, calculus of variations, combinatorics, control theory, finite fields, graph theory, mathematical education, mathematical modeling, number theory, numerical analysis, partial differential equations, scientific computing, set theory, statistics. Excellent computing facilities are available for classroom studies and research. The Department of Mathematical Sciences, through an active faculty, offers graduate students both an unusual amount of personal attention and a lively research atmosphere. The degree programs are designed to provide students with a strong theoretical background in graduate-level mathematics. Our graduates have been successful in finding employment in industry, government and education.

Zhijian Wu, Ph.D., Chair
Kaushik Ghosh, Ph.D., Graduate Coordinator

Mathematical Sciences Faculty

Chair
Wu, Zhijian
Professor; B.C. China University of Geosciences; M.S., Peking University; Ph.D., Washington University. Rebel since 2015.

Graduate Coordinator
Ghosh, Kaushik - Full Graduate Faculty
Associate Professor; B. Stat., Indian Statistical Institute; M.Stat., Indian Statistical Institute; Ph.D., University of California Santa Barbara. Rebel since 2007.

Graduate Faculty
Amei, Amei - Full Graduate Faculty
Associate Professor; B.S., Inner Mongolia University; M.S., University of Science and Technology of China; Ph.D., Washington University. Rebel since 2007.

Ananda, Malwane M.A. - Full Graduate Faculty
Professor; B.S., University of Sri Jayewardenepura; M.S., Ph.D., Purdue University. Rebel since 1990.

Bachman, Gennady - Full Graduate Faculty
Professor; B.A., Temple University; Ph.D., University of Illinois. Rebel since 1991.

Baragar, Arthur - Full Graduate Faculty
Professor; B.S., University of Alberta; Ph.D., Brown University. Rebel since 1997.

Bhatnagar, Satish C. - Full Graduate Faculty
Professor; B.A. (honor), M.A., Panjab University, India; M.A., Ph.D. Indiana University. Rebel since 1974.

Burke, Douglas - Full Graduate Faculty
Associate Professor; B.S., University of Wisconsin, Madison; M.A., University of California, Berkeley; Ph.D., University of California, Los Angeles. Rebel since 1994.

Catlin, Sandra - Full Graduate Faculty
Associate Professor; B.A., University of California,
Berkely; M.S., Ph.D., University of Washington. *Rebel since 1997.*

Cho, Hokwon - *Full Graduate Faculty*
Associate Professor; B.A., Korea University; M.A., Ph.D., University of California, Santa Barbara. *Rebel since 1999.*

Costa, David - *Full Graduate Faculty*
Professor; B.S., Federal University of Pernambuco, Recife, Brazil; Ph.D., Brown University. *Rebel since 1993.*

Dalpatadu, Rohan - *Full Graduate Faculty*
Associate Professor; B.S., University of Ceylon; M.S., Ph.D., Southern Illinois University at Carbondale. *Rebel since 1985.*

Ding, Zhonghai - *Full Graduate Faculty*
Professor; B.S., Nanjing Institute of Technology; M.S., Institute of Systems Science; Ph.D., Texas A&M University.

Ho, Chih-Hsiang - *Full Graduate Faculty*
Professor; B.S., National Central University; M.S., New Mexico Highlands University; M.S., Ph.D., University of Minnesota. *Rebel since 1986.*

Jaynes, Jessica
Assistant Professor; B.A., University of California, Fullerton; M.S., Ph.D. University of California, Los Angeles. *Rebel since 2013.*

Li, Jichun - *Full Graduate Faculty*
Professor; B.S., M.S., Nanjing University, China; Ph.D., Florida State University. *Rebel since 2000.*

Li, Xin - *Full Graduate Faculty*
Associate Professor; B.S., M.S., Jilin University, Changchun; Ph.D., Texas A&M University. *Rebel since 1992.*

Marcozzi, Michael - *Full Graduate Faculty*
Associate Professor; B.S., M.S., Ph.D., University of Delaware. *Rebel since 1997.*

Muleshkov, Angel - *Full Graduate Faculty*
Associate Professor; M.S., Ph.D., University of Washington. *Rebel since 1989.*

Neda, Monika - *Full Graduate Faculty*
Associate Professor; B.S., University of Novi Sad; Ph.D., University of Pittsburgh. *Rebel since 2007.*

Phanord, Dieudonné D. - *Full Graduate Faculty*
Professor; B.S., Gordon College; M.S., Ph.D., University of Illinois, Chicago. *Rebel since 2002.*

Robinette, Michelle - *Full Graduate Faculty*
Associate Professor; B.S., M.A., Ph.D., Western Michigan University. *Rebel since 1996.*

Salehi, Ebrahim - *Full Graduate Faculty*
Professor; B.S., University of Tehran; M.S., Institute of Mathematics, Tehran; M.S., Ph.D., University of Washington. *Rebel since 1985.*

Savatorova, Viktoria
Assistant Professor; B.S., Moscow Institute of Physics and Technology; M.S., Ph.D., Moscow Engineering Institute (MEPhI); D.Sc., Higher Attestation Commission of Ministry of Education and Science, Russia. *Rebel since 2014.*

Shiue, Peter - *Full Graduate Faculty*
Professor; B.S., National Taiwan Normal University; M.S., Ph.D., Southern Illinois University. *Rebel since 1985.*

Sun, Pengtao - *Full Graduate Faculty*
Associate Professor; B.S., M.S., Shandong University; Ph.D. Institute of Mathematics, Academia Sinica. *Rebel since 2007.*

Tehrani, Hossein - *Full Graduate Faculty*
Associate Professor; B.S., Sharif University of Technology; M.S., Ph.D., Courant Institute of Mathematical Sciences. *Rebel since 1997.*

Verma, Sadanand
Professor; B.S., Patna University, Patna Bihar, India; M.S., Bihar University, Muzaffarpur, Bihar, India; M.S., Ph.D., Wayne State University. *Rebel since 1967*

Warren, Carryn - *Full Graduate Faculty*
Associate Professor; B.S., M.S., Ph.D., Old Dominion University. *Rebel since 2003.*
Yang, Hongtao - Full Graduate Faculty
Associate Professor; B.S., M.S., Jilin University; Ph.D., University of Alberta. Rebel since 2007.

Professors Emeriti

Aizely, Paul
Professor; B.A., Harvard University; M.S., University of Arizona; Ph.D., Arizona State University. UNLV Emeritus 1968-2008.

Bowman, Harold
Emeritus Associate Professor; B.E.E., City College of New York; M.A., Oklahoma University; Ph.D., Arizona State University. UNLV Emeritus 1972-1999.

Graham, Malcolm
Emeritus Professor; B.S., New Jersey State College; M.S., University of Massachusetts; Ed.D., Columbia University. UNLV Emeritus 1956-1985.

Miel, George, J.

Nietling, Lloyd
Emeritus Associate Professor; B.A., St. Mary of the Plains College; B.S., Aquinas College; M.A., University of Michigan; Ph.D., Ohio State University. UNLV Emeritus 1967-1992.

Doctor of Philosophy - Mathematical Sciences

Plan Description

UNLV's Mathematical Sciences Ph.D. program is Nevada's only Ph.D. program in the Mathematical Sciences. It is relatively new (established in 2005) and includes concentrations in Applied Math, Pure Math, Computational Math, and Statistics to serve students in many different areas of Mathematical Sciences.

The main part of the Ph.D. is the dissertation. The degree requirements also include: credit requirement, qualifying examination requirement, subject area breadth requirement.

The qualifying examination requirement and the subject area breadth requirement are tailored according to the area of concentration.

For more information about your program, including your graduate program handbook and learning outcomes, please visit the Degree Directory.

Plan Admission Requirements

Applications available on the UNLV Graduate College website.

In addition to the requirements of the Graduate College, applicants must satisfy the admission requirements of the Department of Mathematical Sciences summarized as follows. Applicants seeking direct admission to the doctoral program without a previously earned master's degree must have a minimum GPA of 3.00 for all undergraduate work or a minimum GPA of 3.25 for the last two years of undergraduate mathematics work. Applicants with a master's degree must have a minimum GPA 3.00 for all graduate work and at least 15 credits of graduate course work in Mathematical Sciences with a grade of B or better. Applicants must submit the official score of the GRE General Test with a minimum score in the top 35% on the GRE quantitative.

To apply for admission to the Ph.D. Program, applicants must submit application materials to both
the Graduate College and the Department of Mathematical Sciences.

Firstly, applicants must submit to the Graduate College the following materials:

1. A completed application form.
2. The official transcripts from all colleges and universities the student has attended.

Secondly, applicants must submit to the Department the following materials:

1. Copies of all official transcripts sent to the Graduate College.
2. At least three letters of recommendation from persons familiar with the applicant's academic record and potential for advanced study in mathematical sciences.
3. The official GRE General Test score
4. A completed application for Graduate Assistantship, if interested.
5. A statement of purpose describing the aim in applying for graduate study, the particular area of specialization within the mathematical sciences (if known), and any additional information that may aid the selection committee in evaluating preparation and aptitude for graduate study.

Details of the admission procedure for the Ph.D. Program can be found on the Department's web site.

All domestic and international applicants must review and follow the Graduate College Admission and Registration Requirements.

Students are accepted into a degree program as described in the Graduate Catalog. The faculty and corresponding sub-disciplines and sub-plans within the described programs are subject to change at any time.

Plan Requirements

See subplan requirements below.

Subplan 1 Requirements: Post-Bachelor's - Applied Mathematics Track

Total Credits Required: 78

Course Requirements

Required Courses Part 1 – Credits: 6

Complete two analysis or two theory courses:

- MAT 707 - Real Analysis I
- MAT 708 - Real Analysis II
- OR
- MAT 709 - Complex Function Theory I
- MAT 710 - Complex Function Theory II

Required Courses Part 2 – Credits: 6

- MAT 771 - Applied Analysis I
- MAT 772 - Applied Analysis II

Subject Area Courses – Credits: 12

Complete two of the following one-year course sequences:

- MAT 703 - Abstract Algebra III
- MAT 704 - Abstract Algebra IV
- MAT 723 - Advanced Ordinary Differential Equations I
- MAT 724 - Advanced Ordinary Differential Equations II
- MAT 729 - Partial Differential Equations I
- MAT 730 - Partial Differential Equations II
- MAT 733 - Topology
- MAT 734 - Topology
- MAT 765 - Advanced Numerical Analysis
- MAT 766 - Advanced Numerical Analysis
- STA 767 - Mathematical Statistics I
- STA 768 - Mathematical Statistics II

Additional Courses – Credits: 12

Complete 12 credits of 700-level MAT or STA courses (excluding MAT 711 & 712), or other advisor-approved courses.

Elective Courses – Credits: 24

Complete 24 credits of 600- or 700-level MAT or STA courses (excluding MAT 711 & 712), or other advisor-approved courses.

Dissertation – Credits: 18

- MAT 799 - Dissertation
Degree Requirements

See Plan Degree Requirements below.

Graduation Requirements

See Plan Graduation Requirements below.

Subplan 2 Requirements: Post-Bachelor's - Computational Mathematics Track

Total Credits Required: 78

Course Requirements

Required Courses Part 1 – Credits: 6

Complete two analysis or two theory courses:

- MAT 707 - Real Analysis I
- MAT 708 - Real Analysis II
- OR
- MAT 709 - Complex Function Theory I
- MAT 710 - Complex Function Theory II

Required Courses Part 2 – Credits: 6

- MAT 765 - Advanced Numerical Analysis
- MAT 766 - Advanced Numerical Analysis

Subject Area Courses – Credits: 12

Complete two of the following one-year course sequences:

- MAT 703 - Abstract Algebra III
- MAT 704 - Abstract Algebra IV
- MAT 723 - Advanced Ordinary Differential Equations I
- MAT 724 - Advanced Ordinary Differential Equations II
- MAT 729 - Partial Differential Equations I
- MAT 730 - Partial Differential Equations II
- MAT 733 - Topology
- MAT 734 - Topology
- MAT 771 - Applied Analysis I
- MAT 772 - Applied Analysis II
- STA 767 - Mathematical Statistics I
- STA 768 - Mathematical Statistics II

Additional Courses – Credits: 12

Complete 12 credits of 700-level MAT or STA courses (excluding MAT 711 & 712), or other advisor-approved courses.

Elective Courses – Credits: 24

Complete 24 credits of 600- or 700-level MAT or STA courses (excluding MAT 711 & 712), or other advisor-approved courses.

Dissertation – Credits: 18

MAT 799 - Dissertation

Degree Requirements

See Plan Degree Requirements below.

Graduation Requirements

See Plan Graduation Requirements below.

Subplan 3 Requirements: Post-Bachelor's - Pure Mathematics Track

Total Credits Required: 78

Course Requirements

Required Courses Part 1 – Credits: 6

Complete two analysis or two theory courses:

- MAT 707 - Real Analysis I
- MAT 708 - Real Analysis II
- OR
- MAT 709 - Complex Function Theory I
- MAT 710 - Complex Function Theory II

Required Courses Part 2 – Credits: 6

- MAT 703 - Abstract Algebra III
- MAT 704 - Abstract Algebra IV
- MAT 717 - Analytical Solution Methods for Partial Differential Equations I

Subject Area Courses – Credits: 12

Complete two of the following one-year course sequences:

- MAT 701 - Foundations of Mathematics III
- MAT 702 - Foundations of Mathematics IV
- MAT 717 - Analytical Solution Methods for Partial Differential Equations, I
MAT 718 - Analytical Solution Methods for Partial Differential Equations, II
MAT 723 - Advanced Ordinary Differential Equations I
MAT 724 - Advanced Ordinary Differential Equations II
MAT 733 - Topology
MAT 734 - Topology
MAT 771 - Applied Analysis I
MAT 772 - Applied Analysis II
STA 767 - Mathematical Statistics I
STA 768 - Mathematical Statistics II

Additional Courses – Credits: 12

Complete 12 credits of 700-level MAT or STA courses (excluding MAT 711 & 712), or other advisor-approved courses.

Elective Courses – Credits: 24

Complete 24 credits of 600- or 700-level MAT or STA courses (excluding MAT 711 & 712), or other advisor-approved courses.

Dissertation – Credits: 18

MAT 799 - Dissertation

Degree Requirements

See Plan Degree Requirements below.

Graduation Requirements

See Plan Graduation Requirements below.

Subplan 4 Requirements: Post-Bachelor's - Statistics Track

Total Credits Required: 78

Course Requirements

Required Courses Part 1 – Credits: 6

STA 767 - Mathematical Statistics I
STA 768 - Mathematical Statistics II

Required Courses Part 2 – Credits: 6

STA 761 - Regression Analysis I
STA 762 - Regression Analysis II

Subject Area Courses – Credits: 12

Complete two of the following one-year course sequences:

STA 713 - Experimental Design
STA 715 - Multivariate Statistical Methods
STA 750 - Time Series Analysis
STA 751 - Spatial Statistics
STA 755 - Stochastic Modeling I
STA 756 - Stochastic Modeling II
STA 753 - Bayesian Data Analysis
STA 765 - Statistical Decision Theory
STA 763 - Analysis of Variance I
STA 764 - Analysis of Variance II
MAT 707 - Real Analysis I
STA 731 - Probability Theory and Its Applications

Additional Courses – Credits: 12

Complete 12 credits of 700-level MAT or STA courses (excluding MAT 711 & 712), or other advisor-approved courses.

Elective Courses – Credits: 24

Complete 24 credits of 600- or 700-level MAT or STA courses (excluding MAT 711 & 712), or other advisor-approved courses.

Dissertation – Credits: 18

STA 799 - Dissertation

Degree Requirements

See Plan Degree Requirements below.

Graduation Requirements

See Plan Graduation Requirements below.

Subplan 5 Requirements: Post-Master's - Applied Mathematics Track

Credits Required: 48

Course Requirements
Required Courses Part 1 – Credits: 6

Complete two analysis or two theory courses:

MAT 707 - Real Analysis I
MAT 708 - Real Analysis II
OR
MAT 709 - Complex Function Theory I
MAT 710 - Complex Function Theory II

Required Courses Part 2 – Credits: 6

MAT 771 - Applied Analysis I
MAT 772 - Applied Analysis II

Subject Area Courses – Credits: 12

Complete two of the following one-year course sequences:

MAT 703 - Abstract Algebra III
MAT 704 - Abstract Algebra IV
MAT 723 - Advanced Ordinary Differential Equations I
MAT 724 - Advanced Ordinary Differential Equations II
MAT 729 - Partial Differential Equations I
MAT 730 - Partial Differential Equations II
MAT 733 - Topology
MAT 734 - Topology
MAT 765 - Advanced Numerical Analysis
MAT 766 - Advanced Numerical Analysis
STA 767 - Mathematical Statistics I
STA 768 - Mathematical Statistics II

Elective Courses – Credits: 6

Complete 6 credits of 600- or 700-level MAT or STA courses (excluding MAT 711 & 712), or other advisor-approved courses.

Dissertation – Credits: 18

MAT 799 - Dissertation

Subplan 6 Requirements: Post-Master’s - Computational Mathematics Track

Total Credits Required: 48

Course Requirements

Required Courses Part 1 – Credits: 6

Complete two analysis or two theory courses:

MAT 707 - Real Analysis I
MAT 708 - Real Analysis II
OR
MAT 709 - Complex Function Theory I
MAT 710 - Complex Function Theory II

Required Courses Part 2 – Credits: 6

MAT 765 - Advanced Numerical Analysis
MAT 766 - Advanced Numerical Analysis

Subject Area Courses – Credits: 12

Complete two of the following one-year course sequences:

MAT 703 - Abstract Algebra III
MAT 704 - Abstract Algebra IV
MAT 723 - Advanced Ordinary Differential Equations I
MAT 724 - Advanced Ordinary Differential Equations II
MAT 729 - Partial Differential Equations I
MAT 730 - Partial Differential Equations II
MAT 733 - Topology
MAT 734 - Topology
MAT 771 - Applied Analysis I
MAT 772 - Applied Analysis II
STA 767 - Mathematical Statistics I
STA 768 - Mathematical Statistics II

Elective Courses – Credits: 6

Complete 6 credits of 600- or 700-level MAT or STA courses (excluding MAT 711 & 712), or other advisor-approved courses.

Dissertation – Credits: 18

MAT 799 - Dissertation
Degree Requirements

See Plan Degree Requirements below.

Graduation Requirements

See Plan Graduation Requirements below.

Subplan 7 Requirements: Post-Master's - Pure Mathematics Track

Total Credits Required: 48

Course Requirements

Required Courses Part 1 – Credits: 6

Complete two analysis or two theory courses:

MAT 707 - Real Analysis I
MAT 708 - Real Analysis II
OR
MAT 709 - Complex Function Theory I
MAT 710 - Complex Function Theory II

Required Courses Part 2 – Credits: 6

MAT 703 - Abstract Algebra III
MAT 704 - Abstract Algebra IV

Subject Area Courses – Credits: 12

Complete two of the following one-year course sequences:

MAT 701 - Foundations of Mathematics III
MAT 702 - Foundations of Mathematics IV
MAT 717 - Analytical Solution Methods for Partial Differential Equations, I
MAT 718 - Analytical Solution Methods for Partial Differential Equations, II
MAT 723 - Advanced Ordinary Differential Equations I
MAT 724 - Advanced Ordinary Differential Equations II
MAT 733 - Topology
MAT 734 - Topology
MAT 771 - Applied Analysis I
MAT 772 - Applied Analysis II
STA 767 - Mathematical Statistics I
STA 768 - Mathematical Statistics II

Elective Courses – Credits: 6

Complete 6 credits of 600- or 700-level MAT or STA courses (excluding MAT 711 & 712), or other advisor-approved courses.

Dissertation – Credits: 18

MAT 799 - Dissertation

Subplan 8 Requirements: Post-Master's - Statistics Track

Total Credits Required: 48

Course Requirements

Required Courses Part 1 – Credits: 6

STA 767 - Mathematical Statistics I
STA 768 - Mathematical Statistics II

Required Courses Part 2 – Credits: 6

STA 761 - Regression Analysis I
STA 762 - Regression Analysis II

Subject Area Courses – Credits: 12

Complete two of the following one-year course sequences:

STA 713 - Experimental Design
STA 715 - Multivariate Statistical Methods
STA 750 - Time Series Analysis
STA 751 - Spatial Statistics
STA 755 - Stochastic Modeling I
STA 756 - Stochastic Modeling II
STA 753 - Bayesian Data Analysis
STA 765 - Statistical Decision Theory
STA 763 - Analysis of Variance I
STA 764 - Analysis of Variance II
MAT 707 - Real Analysis I
STA 731 - Probability Theory and Its Applications
Elective Courses – Credits: 6

Complete 6 credits of 600- or 700-level MAT or STA courses (excluding MAT 711 & 712), or other advisor-approved courses.

Dissertation – Credits: 18

STA 799 - Dissertation

Degree Requirements

See Plan Degree Requirements below.

Graduation Requirements

See Plan Graduation Requirements below.

Plan Degree Requirements

1. Students in a post-bachelor’s track must complete a minimum of 60 credits of course work (excluding dissertation), at least 18 of which must be at the 700-level.
2. Students in a post-master’s track must complete a minimum of 30 credits of course work (excluding dissertation), at least 18 of which must be at the 700-level.
3. A student must enroll in a minimum of 18 credits of Dissertation.
4. In consultation with his/her advisor, a student will organize a dissertation committee of at least three departmental members. In addition, a fourth member from outside the department, known as the Graduate College Representative, must be appointed. An additional committee member may be added at the student and department’s discretion. Please see Graduate College policy for committee appointment guidelines.
5. Qualifying Examination. The purpose of the Qualifying Examination is to measure the student's knowledge of basic graduate course work in selected areas and to make sure that the student is prepared to proceed to more advanced studies.
 a. A doctoral student normally takes the Qualifying Examination within the second year after entering the program, based on the core courses in the student's concentration.
 b. Doctoral students must pass the Qualifying Examination within three years.
 c. The Qualifying Examination consists of two parts, corresponding to Required Courses Part 1 & Part 2.
 d. A student who fails the Qualifying Examination on the first attempt will be placed on probation and must complete a second examination within the next twelve months.
 i. A post-bachelor’s track student who fails the second examination may be allowed to complete a M.S. degree with the consent of the Graduate Studies Committee. Such a student will not be permitted to seek readmission to the Doctoral Program in Mathematical Sciences at UNLV.
 ii. A post-master’s track student who fails the Qualifying Examination a second time will be separated from the program.
6. Subject Area Breadth Requirements. With the goal of encouraging students to be exposed to a broad spectrum of mathematics during their graduate studies, doctoral students are required to take at least two one-year sequence courses with a grade of B or better, in addition to the core courses tested by the Ph.D. Qualifying Examination.
7. The purpose of the Comprehensive Examination is to measure a doctoral student's knowledge of the advanced level graduate work that will be required as the student begins to do original research in his or her area of concentration.
a. After passing the Qualifying Examination, a student will engage in the approved course work specified by the Doctoral Advisory Committee and submit to the latter a dissertation proposal.

b. Usually one year after passing the Qualifying Examination, a student will complete the Comprehensive Examination, designed and administered by the Doctoral Advisory Committee, based on the student’s course work with focus on his/her ability to perform research on the dissertation proposal.

c. A student who fails the Comprehensive Examination on the first attempt must complete a second examination within the next semester. A student who fails the examination a second time will be separated from the Doctoral Program.

d. A student who has successfully passed the Comprehensive Examination will be admitted to Candidacy for the Ph.D. degree and thereby be allowed to proceed with the approved dissertation proposal.

8. A doctoral candidate is expected to complete a dissertation embodying the results of significant original research, which is performed independently by the student, and is acceptable to the student’s advisory committee.

9. Skills in foreign languages, computer programming and/or interdisciplinary areas, dependent on the concentration of a student’s program, will be determined by the Doctoral Advisory Committee and the Graduate Studies Committee in consultation with the Department Chair.

10. Dissertation Defense. After submitting to the Doctoral Advisory Committee a dissertation draft that was approved by his/her Dissertation Advisor, a candidate will defend orally the dissertation before the Doctoral Advisory Committee and any other graduate faculty members who wish to attend. The Doctoral Advisory Committee will recommend to the Graduate Coordinator/Department Chair whether the dissertation and defense are both satisfactory.

11. Specific degree requirements, including those listed above, are described in detail in the Graduate Student Handbook for the Ph.D. Program, available on the department’s web site. The listing of graduate courses is constantly under review. Graduate students will automatically receive new listings. Since some courses are taught on an “on demand” basis, course prerequisites for each of the four concentrations are considered guidelines with courses roughly equivalent accepted as prerequisites, subject to approval of the Graduate Studies Committee and the student’s Doctoral Advisory Committee.

12. A student will be placed on academic probation if a minimum of 3.00 GPA is not maintained in all work taken in the degree program. A grade of C or less in one graduate-level course will cause a student to be placed on academic probation and will elicit a critical review of the student’s program by the Graduate Studies Committee.

13. The Graduate College requires a minimum of 50 percent of the total credits required to complete the doctoral degree, exclusive of transferred credits and/or the dissertation, must be earned at UNLV after admission to a graduate degree program.

Plan Graduation Requirements

1. The student must submit all required forms to the Graduate College and then apply for graduation up to two semesters prior to completing his/her degree requirements.

2. The student must submit and successfully defend his/her dissertation by the posted deadline. The defense must be advertised and is open to the public.

3. The student must submit his/her approved, properly formatted hard-copy dissertation to the Graduate College, and submit the
Master of Science - Mathematical Sciences

Plan Description

The degree is a well-established MS program with concentrations in Applied Math, Pure Math, Applied Statistics, and Math Education to serve students in many different areas of Mathematical Sciences.

The concentrations in Pure Math, Applied Math and Applied Statistics each include a core requirement corresponding to the given area. Additional credits are required so that students can develop knowledge in a field of interest. All three require the student to either defend a thesis or pass a written comprehensive exam corresponding to the core requirements.

The teaching mathematics concentration requires a variety of content courses, as well as, education courses. The degree options for the teaching math concentration include the opportunity to write a professional paper.

For more information about your program, including your graduate program handbook and learning outcomes please visit the Degree Directory.

Plan Admission Requirements

Applications available on the UNLV Graduate College website.

1. All domestic and international applicants must review and follow the Graduate College Admission and Registration Requirements.
2. Have a bachelor's degree with a minimum GPA of 2.75 for all undergraduate work or a minimum GPA of 3.00 for the last two years of undergraduate work, and completed at least 18 credits of upper-division mathematics or statistics courses beyond calculus.
3. Submit application materials to both the Graduate College and the Department of Mathematical Sciences.
1. Firstly, applicants must submit to the Graduate College the following materials:
 1. A completed online application
 2. Submit official transcripts from all post-secondary institutions attended

2. Secondly, applicants must submit to the Department of Mathematical Sciences the following materials:
 1. Copies of all transcripts sent to the Graduate College
 2. At least two letters of recommendation from persons familiar with the applicant's academic record and potential for advanced study in mathematical sciences
 3. A statement of purpose describing the aim in applying for graduate study, the particular area of specialization within the mathematical sciences (if known), and any additional information that may aid the selection committee in evaluating the applicant's preparation and aptitude for graduate study
 4. A completed online Graduate Assistantship application, if interested

Students are accepted into a degree program as described in the Graduate Catalog. The faculty and corresponding sub-disciplines and sub-plans within the described programs are subject to change at any time.

Plan Requirements

See Subplan Requirements below.

Subplan 1 Requirements: Pure Mathematics - Thesis Track

Total Credits Required: 33

Course Requirements

Analysis Courses – Credits: 6

Complete two of the following courses:
- MAT 707 - Real Analysis I
- MAT 708 - Real Analysis II
- MAT 709 - Complex Function Theory I
- MAT 710 - Complex Function Theory II
- MAT 771 - Applied Analysis I
- MAT 772 - Applied Analysis II

Algebra Course – Credits: 3

Complete one of the following courses:
- MAT 703 - Abstract Algebra III
- MAT 704 - Abstract Algebra IV
- MAT 753 - Homological Algebra
- MAT 754 - Homological Algebra
- MAT 755 - Topics in Algebra

Area of Emphasis Courses – Credits: 6

Complete an additional 6 credits of 700-level MAT courses (excluding MAT 711 & 712) in a field of special interest.

Elective Courses – Credits: 12

Complete 12 credits of 600- or 700-level MAT or STA courses (excluding MAT 711 & 712), or other advisor-approved courses.

Thesis – Credits: 6

MAT 791 - Thesis

Degree Requirements

1. Students must complete a minimum of 33 credit hours with a minimum GPA of 3.00.
2. Of the 33 required credits, 27 must be coursework. Of those 27 coursework credits, at least 18 must be 700-level.
3. A student will be placed on academic probation if a minimum of 3.00 GPA is not maintained in all work taken in the degree program. A grade of C or less in one graduate-level course will cause a student to be placed on academic probation and will elicit a critical review of the student's program by the Graduate Studies Committee. Students who fail to meet the conditions of their probation will be separated.

4. In consultation with his/her advisor, a student will organize a thesis committee of at least three departmental members. In addition, a fourth member from outside the department, known as the Graduate College Representative, must be appointed. An additional committee member may be added at the student and department's discretion. Please see Graduate College policy for committee appointment guidelines.

Graduation Requirements

1. The student must submit all required forms to the Graduate College and then apply for graduation up to two semesters prior to completing his/her degree requirements.

2. The student must submit and successfully defend his/her thesis by the posted deadline. The defense must be advertised and is open to the public.

3. The student must submit his/her approved, properly formatted hard-copy thesis to the Graduate College, and submit the approved electronic version to ProQuest by the posted deadline.

Subplan 2 Requirements: Pure Mathematics - Comprehensive Exam Track

Total Credits Required: 30

Course Requirements

Analysis Courses – Credits: 6

Complete two of the following courses:

MAT 707 - Real Analysis I
MAT 708 - Real Analysis II

MAT 709 - Complex Function Theory I
MAT 710 - Complex Function Theory II
MAT 771 - Applied Analysis I
MAT 772 - Applied Analysis II

Algebra Course – Credits: 3

Complete one of the following courses:

MAT 703 - Abstract Algebra III
MAT 704 - Abstract Algebra IV
MAT 753 - Homological Algebra
MAT 754 - Homological Algebra
MAT 755 - Topics in Algebra

Area of Emphasis Courses – Credits: 6

Complete an additional 6 credits of 700-level MAT courses (excluding MAT 711 & 712) in a field of special interest.

Elective Courses – Credits: 15

Complete 15 credits of 600- or 700-level MAT or STA courses (excluding MAT 711 & 712), or other advisor-approved courses.

Degree Requirements

1. Students must complete a minimum of 30 credit hours with a minimum GPA of 3.00.

2. Of the 30 required credits, at least 18 must be 700-level.

3. A student will be placed on academic probation if a minimum of 3.00 GPA is not maintained in all work taken in the degree program. A grade of C or less in one graduate-level course will cause a student to be placed on academic probation and will elicit a critical review of the student's program by the Graduate Studies Committee.

4. In consultation with his/her advisor, a student will organize an advisory committee of at least three departmental members. In addition, a fourth member from outside the department, known as the Graduate College Representative, must be appointed. An additional committee member may be added at the student and department's discretion.
Please see Graduate College policy for committee appointment guidelines.

Graduation Requirements

1. The student must submit all required forms to the Graduate College and then apply for graduation up to two semesters prior to completing his/her degree requirements.
2. The student must pass a final comprehensive examination.

Subplan 3 Requirements: Applied Mathematics - Thesis Track

Total Credits Required: 33

Course Requirements

Required Courses – Credits: 6

Complete two of the following courses:

MAT 707 - Real Analysis I
MAT 708 - Real Analysis II
MAT 709 - Complex Function Theory I
MAT 710 - Complex Function Theory II
MAT 771 - Applied Analysis I
MAT 772 - Applied Analysis II

Numerical Analysis Course – Credits: 3

Complete one of the following courses:

MAT 663 - Advanced Matrix Theory and Applications
MAT 765 - Advanced Numerical Analysis
MAT 767 - Topics in Numerical Analysis

Applied and Computational Courses – Credits: 6

Complete 6 credits of 700-level advisor-approved MAT coursework in applied and computational mathematics.

Elective Courses – Credits: 12

Complete 12 credits of 600- or 700-level MAT or STA courses (excluding MAT 711 & 712), or other advisor-approved courses.

Thesis – Credits: 6

MAT 791 - Thesis

Degree Requirements

1. Students must complete a minimum of 30 credit hours with a minimum GPA of 3.00.
2. Of the 33 required credits, 27 must be coursework. Of those 27 coursework credits, at least 18 must be 700-level.
3. A student will be placed on academic probation if a minimum of 3.00 GPA is not maintained in all work taken in the degree program. A grade of C or less in one graduate-level course will cause a student to be placed on academic probation and will elicit a critical review of the student’s program by the Graduate Studies Committee.
4. In consultation with his/her advisor, a student will organize a thesis committee of at least three departmental members. In addition, a fourth member from outside the department, known as the Graduate College Representative, must be appointed. An additional committee member may be added at the student and department’s discretion. Please see Graduate College policy for committee appointment guidelines.

Graduation Requirements

1. The student must submit all required forms to the Graduate College and then apply for graduation up to two semesters prior to completing his/her degree requirements.
2. The student must submit and successfully defend his/her thesis by the posted deadline. The defense must be advertised and is open to the public.
3. The student must submit his/her approved, properly formatted hard-copy thesis to the Graduate College, and submit the approved electronic version to ProQuest by the posted deadline.

Subplan 4 Requirements: Applied Mathematics - Comprehensive Exam Track

Total Credits Required: 30
Course Requirements

Required Courses – Credits: 6

Complete two of the following courses:

- MAT 707 - Real Analysis I
- MAT 708 - Real Analysis II
- MAT 709 - Complex Function Theory I
- MAT 710 - Complex Function Theory II
- MAT 771 - Applied Analysis I
- MAT 772 - Applied Analysis II

Numerical Analysis Course – Credits: 3

Complete one of the following courses:

- MAT 663 - Advanced Matrix Theory and Applications
- MAT 765 - Advanced Numerical Analysis
- MAT 767 - Topics in Numerical Analysis

Applied and Computational Courses – Credits: 6

Complete 6 credits of 700-level advisor-approved MAT coursework in applied and computational mathematics.

Elective Courses – Credits: 15

Complete 15 credits of 600- or 700-level MAT or STA courses (excluding MAT 711 & 712), or other advisor-approved courses.

Degree Requirements

1. Students must complete a minimum of 30 credit hours with a minimum GPA of 3.00.
2. Of the 30 required credits, at least 18 must be 700-level.
3. A student will be placed on academic probation if a minimum of 3.00 GPA is not maintained in all work taken in the degree program. A grade of C or less in one graduate-level course will cause a student to be placed on academic probation and will elicit a critical review of the student's program by the Graduate Studies Committee.
4. In consultation with his/her advisor, a student will organize an advisory committee of at least three departmental members. In addition, a fourth member from outside the department, known as the Graduate College Representative, must be appointed. An additional committee member may be added at the student and department's discretion. Please see Graduate College policy for committee appointment guidelines.

Graduation Requirements

1. The student must submit all required forms to the Graduate College and then apply for graduation up to two semesters prior to completing his/her degree requirements.
2. The student must successfully complete a final comprehensive examination.

Subplan 5 Requirements: Applied Statistics - Thesis Track

Total Credits Required: 33

Course Requirements

Required Courses – Credits: 6

- MAT 657 - Introduction to Real Analysis I
- MAT 663 - Advanced Matrix Theory and Applications

Core Courses – Credits: 12

- STA 761 - Regression Analysis I
- STA 762 - Regression Analysis II
- STA 767 - Mathematical Statistics I
- STA 768 - Mathematical Statistics II

Statistics Courses – Credits: 6

Complete an additional 6 credits of 700-level STA coursework in a field of special interest to the student.

Elective Courses – Credits: 3

Complete 3 credits of 600- or 700-level MAT or STA courses (excluding MAT 711 & 712), or other advisor-approved courses.

Thesis – Credits: 6

- STA 791 - Thesis
Degree Requirements

1. Students must complete a minimum of 30 credit hours with a minimum GPA of 3.00.
2. Of the 33 required credits, 27 must be coursework. Of those 27 coursework credits, at least 18 must be 700-level.
3. A student will be placed on academic probation if a minimum of 3.00 GPA is not maintained in all work taken in the degree program. A grade of C or less in one graduate-level course will cause a student to be placed on academic probation and will elicit a critical review of the student's program by the Graduate Studies Committee.
4. In consultation with his/her advisor, a student will organize a thesis committee of at least three departmental members. In addition, a fourth member from outside the department, known as the Graduate College Representative, must be appointed. An additional committee member may be added at the student and department's discretion. Please see Graduate College policy for committee appointment guidelines.

Graduation Requirements

1. The student must submit all required forms to the Graduate College and then apply for graduation up to two semesters prior to completing his/her degree requirements.
2. The student must submit and successfully defend his/her thesis by the posted deadline. The defense must be advertised and is open to the public.
3. The student must submit his/her approved, properly formatted hard-copy thesis to the Graduate College, and submit the approved electronic version to ProQuest by the posted deadline.

Subplan 6 Requirements: Applied Statistics - Comprehensive Exam Track

Total Credits Required: 30

Course Requirements

Required Courses – Credits: 6

MAT 657 - Introduction to Real Analysis I
MAT 663 - Advanced Matrix Theory and Applications

Core Courses – Credits: 12

STA 761 - Regression Analysis I
STA 762 - Regression Analysis II
STA 767 - Mathematical Statistics I
STA 768 - Mathematical Statistics II

Statistics Courses – Credits: 6

Complete an additional 6 credits of 700-level STA coursework in a field of special interest to the student.

Elective Courses – Credits: 6

Complete 6 credits of 600- or 700-level MAT or STA courses (excluding MAT 711 & 712), or other advisor-approved courses.

Degree Requirements

1. Students must complete a minimum of 30 credit hours with a minimum GPA of 3.00.
2. Of the 30 required credits, 27 must be coursework. Of those 27 coursework credits, at least 18 must be 700-level.
3. A student will be placed on academic probation if a minimum of 3.00 GPA is not maintained in all work taken in the degree program. A grade of C or less in one graduate-level course will cause a student to be placed on academic probation and will elicit a critical review of the student's program by the Graduate Studies Committee.
4. In consultation with his/her advisor, a student will organize an advisory committee of at least three departmental members. In addition, a fourth member from outside the department, known as the Graduate College Representative, must be appointed. An additional committee member may be added at the student and department's discretion. Please see Graduate College policy for committee appointment guidelines.
Graduation Requirements

1. The student must submit all required forms to the Graduate College and then apply for graduation up to two semesters prior to completing his/her degree requirements.
2. The student must pass a final comprehensive examination.

Subplan 7 Requirements: Teaching Mathematics - Professional Paper Track

Total Credits Required: 30

Course Requirements

Required Courses – Credits: 9

MAT 711 - Survey of Mathematical Problems I
MAT 712 - Survey of Mathematical Problems II
MAT 714 - History of Mathematics

Algebra Course – Credits: 3

Complete one of the following courses:

MAT 653 - Abstract Algebra I
MAT 654 - Abstract Algebra II
MAT 703 - Abstract Algebra III
MAT 704 - Abstract Algebra IV
MAT 655 - Elementary Theory of Numbers I
MAT 669 - Combinatorics I
MAT 670 - Combinatorics II

Analysis Course – Credits: 3

Complete one of the following courses:

MAT 657 - Introduction to Real Analysis I
MAT 658 - Introduction to Real Analysis II
MAT 707 - Real Analysis I
MAT 708 - Real Analysis II
MAT 659 - Elementary Complex Analysis
MAT 709 - Complex Function Theory I
MAT 710 - Complex Function Theory II
MAT 687 - Introduction to Partial Differential Equations

Foundations Course – Credits: 3

Complete one of the following courses:

MAT 651 - Foundations of Mathematics I
MAT 652 - Foundations of Mathematics II
MAT 701 - Foundations of Mathematics III
MAT 702 - Foundations of Mathematics IV
MAT 680 - College Geometry
MAT 683 - General Topology I
MAT 684 - General Topology II

Education Courses – Credits: 6

Complete two of the following courses:

CIS 622 - Instructional Middle School Mathematics Education
CIS 624 - Instruction Secondary Mathematics Education
CIG 620 - Principles of Learning Mathematics

Elective Courses – Credits: 3

Complete 3 credits of 600- or 700-level MAT or STA courses, or other advisor-approved courses.

Professional Paper – Credits: 3

MAT 793 - Teaching Concentration Professional Paper Research

Degree Requirements

1. Students must complete a minimum of 30 credit hours with a minimum GPA of 3.00.
2. Of the 30 required credits, 27 must be coursework. Of those 27 coursework credits, at least 15 must be 700-level.
3. A student will be placed on academic probation if a minimum of 3.00 GPA is not maintained in all work taken in the degree program. A grade of C or less in one graduate-level course will cause a student to be placed on academic probation and will elicit a critical review of the student’s program by the Graduate Studies Committee.
4. In consultation with his/her advisor, a student will organize an advisory committee of at least three departmental members. In addition, a fourth member from outside the department, known as the Graduate College Representative, must be appointed. An additional committee member may be added
at the student and department's discretion. Please see Graduate College policy for committee appointment guidelines.

Graduation Requirements

1. The student must submit all required forms to the Graduate College and then apply for graduation up to two semesters prior to completing his/her degree requirements.
2. The student must successfully complete and defend a professional paper.

Subplan 8 Requirements: Teaching Mathematics - Comprehensive Exam Track

Total Credits Required: 30

Course Requirements

Required Courses – Credits: 9

MAT 711 - Survey of Mathematical Problems I
MAT 712 - Survey of Mathematical Problems II
MAT 714 - History of Mathematics

Algebra Course – Credits: 3

Complete one of the following courses:

MAT 653 - Abstract Algebra I
MAT 654 - Abstract Algebra II
MAT 703 - Abstract Algebra III
MAT 704 - Abstract Algebra IV
MAT 655 - Elementary Theory of Numbers I
MAT 669 - Combinatorics I
MAT 670 - Combinatorics II

Analysis Course – Credits: 3

Complete one of the following courses:

MAT 657 - Introduction to Real Analysis I
MAT 658 - Introduction to Real Analysis II
MAT 707 - Real Analysis I
MAT 708 - Real Analysis II
MAT 659 - Elementary Complex Analysis
MAT 709 - Complex Function Theory I
MAT 710 - Complex Function Theory II
MAT 687 - Introduction to Partial Differential Equations

Foundations Course – Credits: 3

Complete one of the following courses:

MAT 651 - Foundations of Mathematics I
MAT 652 - Foundations of Mathematics II
MAT 701 - Foundations of Mathematics III
MAT 702 - Foundations of Mathematics IV
MAT 680 - College Geometry
MAT 683 - General Topology I
MAT 684 - General Topology II

Education Courses – Credits: 6

Complete two of the following courses:

CIS 622 - Instructional Middle School Mathematics Education
CIS 624 - Instruction Secondary Mathematics Education
CIG 620 - Principles of Learning Mathematics

Elective Courses – Credits: 6

Complete 6 credits of 600- or 700-level MAT or STA courses, or other advisor-approved courses.

Degree Requirements

1. Students must complete a minimum of 30 credit hours with a minimum GPA of 3.00.
2. Of the 30 required credits, 27 must be coursework. Of those 27 coursework credits, at least 15 must be 700-level.
3. A student will be placed on academic probation if a minimum of 3.00 GPA is not maintained in all work taken in the degree program. A grade of C or less in one graduate-level course will cause a student to be placed on academic probation and will elicit a critical review of the student's program by the Graduate Studies Committee.
4. In consultation with his/her advisor, a student will organize an advisory committee of at least three departmental members. In addition, a fourth member from outside the department, known as the Graduate College Representative, must be appointed. An additional committee member may be added at the student and department's discretion.
Please see Graduate College policy for committee appointment guidelines.

Graduation Requirements

1. The student must submit all required forms to the Graduate College and then apply for graduation up to two semesters prior to completing his/her degree requirements.
2. The student must pass a final comprehensive examination.

Plan Graduation Requirements

Refer to your subplan for Graduation Requirements.

Mathematics Courses

MAT 651 - Foundations of Mathematics I
Credits 3
Introduction to logic, set algebra and Boolean algebra, with applications to the theory of computing machines.

Notes This course is crosslisted with MAT 451. Credit at the 600-level requires additional work. The 600-level MAT and STA courses that are normally available for graduate credit are those numbered 650 or higher; the exceptions are MAT 680, which may be counted for graduate credit in an education degree program, and STA 691, STA 693, and STA 695, which may be counted for graduate credit in a biological sciences program.

MAT 652 - Foundations of Mathematics II
Credits 3
Formalization, proofs, and models of quantificational logic; axiomatics; application to mathematical theories, including set theory.

Notes This course is crosslisted with MAT 452. Credit at the 600-level requires additional work. The 600-level MAT and STA courses that are normally available for graduate credit are those numbered 650 or higher; the exceptions are MAT 680, which may be counted for graduate credit in an education degree program, and STA 691, STA 693, and STA 695, which may be counted for graduate credit in a biological sciences program.

MAT 653 - Abstract Algebra I
Credits 3
Sets, functions, groups, quotient groups, homomorphism theorems, Abelian groups, rings, polynomial rings, division rings, Euclidean domains, fields and vector spaces.

Notes This course is crosslisted with MATH 453. Credit at the 600-level requires additional work. The 600-level MAT and STA courses that are normally available for graduate credit are those numbered 650 or higher; the exceptions are MAT 680, which may be counted for graduate credit in an education degree program, and STA 691, STA 693, and STA 695, which may be counted for graduate credit in a biological sciences program.
MAT 654 - Abstract Algebra II
Credits 3
Sets, functions, groups, quotient groups, homomorphism theorems, Abelian groups, rings, polynomial rings, division rings, Euclidean domains, fields and vector spaces.
Notes This course is crosslisted with MATH 454. Credit at the 600-level requires additional work. The 600-level MAT and STA courses that are normally available for graduate credit are those numbered 650 or higher; the exceptions are MAT 680, which may be counted for graduate credit in an education degree program, and STA 691, STA 693, and STA 695, which may be counted for graduate credit in a biological sciences program.

MAT 655 - Elementary Theory of Numbers I
Credits 3
Topics include divisibility, arithmetic functions, congruences, quadratic residues, primitive roots, Diophantine equations, continued fractions, algebraic numbers, and partitions.
Notes This course is crosslisted with MATH 455. Credit at the 600-level requires additional work. The 600-level MAT and STA courses that are normally available for graduate credit are those numbered 650 or higher; the exceptions are MAT 680, which may be counted for graduate credit in an education degree program, and STA 691, STA 693, and STA 695, which may be counted for graduate credit in a biological sciences program.

MAT 656 - Elementary Theory of Numbers II
Credits 3
Topics include divisibility, arithmetic functions, congruences, quadratic residues, primitive roots, Diophantine equations, continued fractions, algebraic numbers, and partitions.
Notes This course is crosslisted with MATH 456. Credit at the 600-level requires additional work. The 600-level MAT and STA courses that are normally available for graduate credit are those numbered 650 or higher; the exceptions are MAT 680, which may be counted for graduate credit in an education degree program, and STA 691, STA 693, and STA 695, which may be counted for graduate credit in a biological sciences program.

MAT 657 - Introduction to Real Analysis I
Credits 3
Topics include finite and infinite sets, axiomatic study of real numbers, topology of Cartesian spaces, sequences of functions, continuous functions, differentiation of functions of one variable.
Notes This course is crosslisted with MATH 457. Credit at the 600-level requires additional work. The 600-level MAT and STA courses that are normally available for graduate credit are those numbered 650 or higher; the exceptions are MAT 680, which may be counted for graduate credit in an education degree program, and STA 691, STA 693, and STA 695, which may be counted for graduate credit in a biological sciences program.

MAT 658 - Introduction to Real Analysis II
Credits 3
Topics include uniform continuity and fixed point theorems, sequences of continuous functions, approximation theorems, Riemann-Stieltjes integral, uniform convergence and infinite integrals, series of functions, differentiation in R^n.
Notes This course is crosslisted with MATH 458. Credit at the 600-level requires additional work. The 600-level MAT and STA courses that are normally available for graduate credit are those numbered 650 or higher; the exceptions are MAT 680, which may be counted for graduate credit in an education degree program, and STA 691, STA 693, and STA 695, which may be counted for graduate credit in a biological sciences program.

MAT 659 - Elementary Complex Analysis
Credits 3
Complex numbers, analytic functions, contour integration, conformal mapping, applications.
Notes This course is crosslisted with MATH 459. Credit at the 600-level requires additional work. The 600-level MAT and STA courses that are normally available for graduate credit are those numbered 650 or higher; the exceptions are MAT 680, which may be counted for graduate credit in an education degree program, and STA 691, STA 693, and STA 695, which may be counted for graduate credit in a biological sciences program.

MAT 661 - Probability Theory
Credits 3
Fundamental concepts of probability; random variables, binomial, Poisson, normal, chi-square, T, F and other distributions; transformations of random variables; conditional and marginal distributions; central limit theorem and concepts associated with the field of statistics.

Notes This course is crosslisted with MATH 461. Credit at the 600-level requires additional work. The 600-level MAT and STA courses that are normally available for graduate credit are those numbered 650 or higher; the exceptions are MAT 680, which may be counted for graduate credit in an education degree program, and STA 691, STA 693, and STA 695, which may be counted for graduate credit in a biological sciences program.

MAT 662 - Stochastic Processes
Credits 3
Markov chains and jump processes, elements of queuing theory, stationary stochastic processes, the Wiener process and stochastic differential equations.

Notes This course is crosslisted with MATH 462. Credit at the 600-level requires additional work. The 600-level MAT and STA courses that are normally available for graduate credit are those numbered 650 or higher; the exceptions are MAT 680, which may be counted for graduate credit in an education degree program, and STA 691, STA 693, and STA 695, which may be counted for graduate credit in a biological sciences program.

MAT 663 - Advanced Matrix Theory and Applications
Credits 3

Notes This course is crosslisted with MATH 463. Credit at the 600-level requires additional work. The 600-level MAT and STA courses that are normally available for graduate credit are those numbered 650 or higher; the exceptions are MAT 680, which may be counted for graduate credit in an education degree program, and STA 691, STA 693, and STA 695, which may be counted for graduate credit in a biological sciences program.

MAT 665 - Numerical Analysis I
Credits 3
This course, when taught by a member of the graduate faculty, may be applied to a graduate program. For listings and a course description of this 600-level course, please consult the current Undergraduate Catalog under the corresponding 400 number.

Notes The 600-level MAT and STA courses that are normally available for graduate credit are those numbered 650 or higher; the exceptions are MAT 680, which may be counted for graduate credit in an education degree program, and STA 691, STA 693, and STA 695, which may be counted for graduate credit in a biological sciences program.

MAT 666 - Numerical Analysis II
Credits 3
This course, when taught by a member of the graduate faculty, may be applied to a graduate program. For listings and a course description of this 600-level course, please consult the current Undergraduate Catalog under the corresponding 400 number.

Notes The 600-level MAT and STA courses that are normally available for graduate credit are those numbered 650 or higher; the exceptions are MAT 680, which may be counted for graduate credit in an education degree program, and STA 691, STA 693, and STA 695, which may be counted for graduate credit in a biological sciences program.

MAT 668 - Applied Finite Element Analysis
Credits 3
Introduction to finite element method with computer applications to engineering continuum problems such as thermodynamics, solid/fluid mechanics. Topics include variational formulation of boundary value problems, natural and essential boundary conditions, discretization of domain based on rectangular, triangular, tetrahedral and other elements, with linear, quadratic and higher order polynomial approximations.

Notes This course is crosslisted with MATH 468. Credit at the 600-level requires additional work. The 600-level MAT and STA courses that are normally available for graduate credit are those numbered 650.
or higher; the exceptions are MAT 680, which may be counted for graduate credit in an education degree program, and STA 691, STA 693, and STA 695, which may be counted for graduate credit in a biological sciences program.

MAT 669 - Combinatorics I
Credits 3
Graph models, covering circuits, graph colorings, trees and searching, general counting methods for arrangements and selections, generating functions, recurrence relations, and inclusion-exclusion.

Notes This course is crosslisted with MATH 469. Credit at the 600-level requires additional work. The 600-level MAT and STA courses that are normally available for graduate credit are those numbered 650 or higher; the exceptions are MAT 680, which may be counted for graduate credit in an education degree program, and STA 691, STA 693, and STA 695, which may be counted for graduate credit in a biological sciences program.

MAT 670 - Combinatorics II
Credits 3
Advanced topics in combinatorics. Topics to be selected by the instructor.

Notes This course is crosslisted with MATH 470. Credit at the 600-level requires additional work. The 600-level MAT and STA courses that are normally available for graduate credit are those numbered 650 or higher; the exceptions are MAT 680, which may be counted for graduate credit in an education degree program, and STA 691, STA 693, and STA 695, which may be counted for graduate credit in a biological sciences program.

MAT 680 - College Geometry
Credits 3
Study of advanced geometrical topics using the methods of proof of elementary geometry.

Notes This course is crosslisted with MATH 480. Credit at the 600-level requires additional work. The 600-level MAT and STA courses that are normally available for graduate credit are those numbered 650 or higher; the exceptions are MAT 680, which may be counted for graduate credit in an education degree program, and STA 691, STA 693, and STA 695, which may be counted for graduate credit in a biological sciences program.

MAT 683 - General Topology I
Credits 3
Topological spaces, nets and filters, compactness, continuous functions, product and quotient spaces, introduction to algebraic topology.

Notes This course is crosslisted with MATH 483. Credit at the 600-level requires additional work. The 600-level MAT and STA courses that are normally available for graduate credit are those numbered 650 or higher; the exceptions are MAT 680, which may be counted for graduate credit in an education degree program, and STA 691, STA 693, and STA 695, which may be counted for graduate credit in a biological sciences program.

MAT 684 - General Topology II
Credits 3
Topological spaces, nets and filters, compactness, continuous functions, product and quotient spaces, introduction to algebraic topology.

Notes This course is crosslisted with MATH 484. Credit at the 600-level requires additional work. The 600-level MAT and STA courses that are normally available for graduate credit are those numbered 650 or higher; the exceptions are MAT 680, which may be counted for graduate credit in an education degree program, and STA 691, STA 693, and STA 695, which may be counted for graduate credit in a biological sciences program.

MAT 687 - Introduction to Partial Differential Equations
Credits 3
Method of separation of variables, Fourier series, divergence theorem and Green's identities, equations of mathematical physics, initial and initial boundary value problems, well-posedness, heat conduction in a thin rod, vibrations of a string, Laplace's equation, solution of the Dirichlet problem for a disc and for a rectangle.

Notes This course is crosslisted with MATH 488. Credit at the 600-level requires additional work. The 600-level MAT and STA courses that are normally available for graduate credit are those numbered 650 or higher; the exceptions are MAT 680, which may be counted for graduate credit in an education degree program, and STA 691, STA 693, and STA 695, which may be counted for graduate credit in a biological sciences program.
MAT 689 - Advanced Mathematical Topics
Credits 3
Graduate-level course in advanced topics of mathematics, depending upon the interest of faculty and students.
Notes This course is crosslisted with MATH 489. Credit at the 600-level requires additional work. The 600-level MAT and STA courses that are normally available for graduate credit are those numbered 650 or higher; the exceptions are MAT 680, which may be counted for graduate credit in an education degree program, and STA 691, STA 693, and STA 695, which may be counted for graduate credit in a biological sciences program.
May be repeated to a maximum of six credits.

MAT 690 - Independent Study
Credits 3
Library research and reports on topics of mathematical interest.
Notes This course is crosslisted with MAT 499. Credit at the 600-level requires additional work. The 600-level MAT and STA courses that are normally available for graduate credit are those numbered 650 or higher; the exceptions are MAT 680, which may be counted for graduate credit in an education degree program, and STA 691, STA 693, and STA 695, which may be counted for graduate credit in a biological sciences program.

MAT 701 - Foundations of Mathematics III
Credits 3
Selection from the following topics: model theory, recursive function theory, set theory, mathematics of metamathematics.
Prerequisites MAT 652

MAT 702 - Foundations of Mathematics IV
Credits 3
Selection from the following topics: model theory, recursive function theory, set theory, mathematics of metamathematics.
Prerequisites MAT 652

MAT 703 - Abstract Algebra III
Credits 3
Detailed study of the following algebraic structures: groups, rings and ideals, fields, modules, and Galois theory.
Prerequisites A year of undergraduate abstract algebra or consent of instructor.

MAT 704 - Abstract Algebra IV
Credits 3
Detailed study of the following algebraic structures: groups, rings and ideals, fields, modules, and Galois theory.
Prerequisites A year of undergraduate abstract algebra or consent of instructor.

MAT 707 - Real Analysis I
Credits 3
Prerequisites MAT 658

MAT 708 - Real Analysis II
Credits 3
Prerequisites MAT 658

MAT 709 - Complex Function Theory I
Credits 3
Analytic functions, conformal mappings, Cauchy's theorem, power series, Laurent series, the Riemann mapping theorem, harmonic functions, subharmonic functions, canonical mappings of multiply connected regions, analytic continuation.
Prerequisites MAT 657 or MAT 659 or equivalent.

MAT 710 - Complex Function Theory II
Credits 3
Analytic functions, conformal mappings, Cauchy's theorem, power series, Laurent series, the Riemann mapping theorem, harmonic functions, subharmonic functions, canonical mappings of multiply connected regions, analytic continuation.
Prerequisites MAT 657 or MAT 659 or equivalent.

MAT 711 - Survey of Mathematical Problems I
Credits 3
Selected topics from logical reasoning, probability, combinatorics, graph theory, codes, number theory, constructibility, game theory, limits, functions, set theory and foundations, and plane geometry. Problem solving and techniques of proof emphasized.
throughout. Connections made between the mathematics of this course and secondary education mathematics.

Prerequisites Graduate standing and consent of instructor.

MAT 712 - Survey of Mathematical Problems II
Credits 3
Continuation of topics listed for MAT 711 with emphasis on problem solving and techniques of proof. Again, connections made between the mathematical content of this course and mathematical content for secondary education.

Prerequisites MAT 711 or consent of instructor.

MAT 714 - History of Mathematics
Credits 3
Historical development of mathematics from primitive origins to the present time. Lives of many mathematicians and their contributions to the development of mathematics.

Prerequisites Graduate standing and consent of instructor.

MAT 716 - Integrative Mathematical Topics
Credits 3
Survey of mathematical topics in an integrative manner. The topics may cover theory and applications in long stretches including probability and statistics; combinatorics, number theory and algebra; geometry and topology; ODE and PDE; computation and numerical analysis; Real and complex analysis.

Prerequisites At least nine credits at 600-level as required in Requirement #1.

MAT 717 - Analytical Solution Methods for Partial Differential Equations, I
Credits 3
Covers the basic theory and methods for solving linear partial differential equations. Emphasis on introducing various techniques to obtain analytical solutions of linear partial differential equations. Techniques include: Method of separation of variables; Fourier transform method; Laplace transform method; Green's function method, etc.

Prerequisites MAT 487/687, or MAT 458/658, or consent of instructor.

MAT 718 - Analytical Solution Methods for Partial Differential Equations, II
Credits 3
Covers the basic theory and methods for solving nonlinear partial differential equations. Emphasis on introducing various techniques to obtain analytical solutions. Techniques include: Generalized method of characteristics, method of shock wave solution, method of travelling wave solution, perturbation method, method of similarity solution, etc.

Prerequisites MAT 487/687, or MAT 717, or consent of instructor.

MAT 723 - Advanced Ordinary Differential Equations I
Credits 3
Functional analysis; Frechet calculus; existence and uniqueness theorems for initial and boundary value problems; qualitative properties of solutions, particularly of linear equations.

Prerequisites MAT 671-672 or MAT 673-674

MAT 724 - Advanced Ordinary Differential Equations II
Credits 3
Topics to be selected from the following: Sturm-Liouville theory, stability theory, perturbation theory, numerical methods, the theory of invariant imbedding and functional differential equations.

Prerequisites MAT 723

MAT 725 - Mathematics for Operations Research I
Credits 3

Prerequisites MAT 661

MAT 726 - Mathematics for Operations Research II
Credits 3
Linear and non-linear programming, dynamic programming, Lagrange multiplier and duality theorems, control theory and optimal control, applications of programming.

Prerequisites MAT 671 and 673

MAT 729 - Partial Differential Equations I
Credits 3
Linear and nonlinear first order PDEs. Heat, wave and Laplace equations. Classical representation
formulas in one and more dimensions. Properties of solutions: maximum principles, energy methods, uniqueness and regularity considerations.

Prerequisites MAT 687 or MAT 717

MAT 730 - Partial Differential Equations II
Credits 3
Develops a functional analytical framework which will give students a deeper understanding of the subject matter. Topics include Sobolev and Holder spaces, embedding inequalities, weak solutions, regularity and maximum principles.

Prerequisites MAT 708 and MAT 729, or consent of instructor.

MAT 731 - Mathematical Modeling
Credits 3
Process and techniques of mathematical modeling with an emphasis on differential equations based models, though other models may also be considered. Applications selected from physical, biological and social sciences. Modeling projects based on student interests. Symbolic computation software.

Prerequisites MAT 687 or MAT 717 or consent of instructor.

MAT 733 - Topology
Credits 3
Selected topics from algebraic and point-set topology with emphasis on algebraic topology.

Prerequisites MAT 684 or consent of instructor.

MAT 734 - Topology
Credits 3
Selected topics from algebraic and point-set topology with emphasis on algebraic topology.

Prerequisites MAT 684 or consent of instructor.

MAT 736 - Lightning Radiative Transfer I
Credits 3
The analysis of lightning events: cloud-to-ground and intra-cloud discharges, ground and space detection of lightning.

Prerequisites MAT 729 or consent of instructor.

MAT 737 - Lightning Radiative Transfer II
Credits 3
Diffusion propagation of Lightning, transport phenomena, and applications of advanced Twersky scattering through clouds.

MAT 740 - Mathematical Wave Propagation Theory and Application I
Credits 3
Review of linear wave equations, techniques of linear and non-linear modeling of natural occurrences and their role in understanding mathematical inversion, mathematical foundation of dyadic wave propagation, introduction to asymptotic analysis and boundary layer theory, application to problems for waves propagating in the atmosphere, ocean and space.

Prerequisites MAT 717 or MAT 729 or consent of instructor.

MAT 741 - Mathematical Wave Propagation Theory and Application II
Credits 3
The generalized tensor wave nature of matter, advanced mathematical methods of non-linear and quantum optics. Earthquake dynamics, elastic waves and cracks propagation with applications from earth system and space science.

Prerequisites MAT 718 and MAT 740 or consent of instructor.

MAT 751 - Topics in Foundations of Mathematics
Credits 3
Notes May be repeated for credit with the consent of the mathematics department. Except under special circumstances, total credits limited to six credits.

Prerequisites MAT 701-702

MAT 753 - Homological Algebra
Credits 3
Modules, categories and factors, tensors, Hom, Tor, Ext, the dimensions of rings and modules, derived factors, cohomology of groups and algebras.

Prerequisites MAT 703-704 or consent of instructor.

MAT 754 - Homological Algebra
Credits 3
Modules, categories and factors, tensors, Hom, Tor, Ext, the dimensions of rings and modules, derived factors, cohomology of groups and algebras.

Prerequisites MAT 703-704 or consent of instructor.

MAT 755 - Topics in Algebra
Credits 3
Notes May be repeated for credit with the consent of the mathematics department. Except under special
circumstances, total credits limited to six.

Prerequisites MAT 703-704 or consent of instructor.

MAT 756 - Arithmetic on Elliptic Curves
Credits 3
The group structure of elliptic curves over the reals, complex numbers, the rationals, number fields, and finite fields; Bezout's theorem and its applications; projective geometry; genus; Mordell's theorem; points of finite order; and heights. Additional topics may include complex multiplication; modular forms; and factoring using elliptic curves.

Prerequisites MAT 653 and 654, or equivalent.

MAT 757 - Topics in Analysis
Credits 3

Notes May be repeated for credit with the consent of the mathematics department. Except under special circumstances, total credits limited to six.

Prerequisites MAT 707-708 or consent of instructor.

MAT 760 - Mathematical Scattering Theory and Applications I
Credits 3
Scalar, vector, and tensor scattering with diverse techniques applied to earth system and space science. General Reciprocity Relations Corresponding to Different Directions of Incidence, Dyadic Scattering Theory, Two-Space Scattering Formalism of Victor Twersky, and Applications to Earth and Space Related Problems.

Prerequisites MAT 717 or MAT 729 or consent of instructor.

MAT 761 - Mathematical Scattering Theory and Applications II
Credits 3
Advanced statistical mechanics and spatial statistics in relation to Twersky scattering with applications from earth system and space science. Calculation of bulk propagation parameters using both configurational and ensemble average in addition to spatial average. Application of Twersky multiple two-Space Scattering formalism to space and earth related problems.

Prerequisites MAT 760 or consent of instructor.

MAT 765 - Advanced Numerical Analysis
Credits 3
Numerical solution of ordinary and partial differential equations; advanced programming techniques; experiments with the computer.

Notes Topics selected by instructor. Three hours lecture, two hours laboratory.

Prerequisites MAT 666

MAT 766 - Advanced Numerical Analysis
Credits 3
Numerical solution of ordinary and partial differential equations; advanced programming techniques; experiments with the computer.

Notes Topics selected by instructor. Three hours lecture, two hours laboratory.

Prerequisites MAT 666

MAT 767 - Topics in Numerical Analysis
Credits 3
Topics selected by the instructor.

Notes May be repeated for credit with the consent of the mathematics department. Except under special circumstances, total credits limited to six.

Prerequisites MAT 765-766

MAT 771 - Applied Analysis I
Credits 3
Functional analysis in Banach spaces and Hilbert spaces, with emphasis on computational applications. Theoretical topics to be selected from: linear functionals and operators, fixed point theorems, iterative methods, elementary spectral theory. Applications to be selected from: finite element methods, finite difference methods, approximation and interpolation, optimization algorithms.

Prerequisites Graduate standing and consent of instructor.

MAT 772 - Applied Analysis II
Credits 3
Functional analysis in Banach spaces and Hilbert spaces, with emphasis on computational applications. Theoretical topics to be selected from: linear functionals and operators, fixed point theorems, iterative methods, elementary spectral theory. Applications to be selected from: finite element methods, finite difference methods, approximation and interpolation, optimization algorithms.

Prerequisites Graduate standing and consent of instructor.
MAT 775 - Calculus of Variations
Credits 3
Variation of functionals, Euler-Lagrange equation, general variations, broken extremals, Weierstrass-Erdmann conditions, canonical forms, Noether’s theorem, Hamilton- Jacobi equations, Legendre's condition, conjugate points, fields, E-function, sufficient conditions for extrema, Pontryagin's principle, introduction to linear and non-linear optimal control theory.
Prerequisites MATH 428 or 658 or consent of instructor.

MAT 777 - Application of High-Performance Computing Methods in Science and Engineering
Credits 3
Application of high performance computing systems to science and engineering, models for numerically intensive problem solving, high performance numerical algorithms, FORTRAN 90 and high-performance FORTRAN.
Same as (ME 777)
Prerequisites Knowledge of UNIX, FORTRAN, and previous course on numerical methods. Graduate standing.

MAT 781 - Advanced Graduate Workshop in Foundations
Credits 3
Students are assigned advanced material to read, lecture on, and present to the class. Two years of 700-level mathematics in Foundations are required. The workshop is very time intensive, with additional weekly meetings required. Students will present polished lectures, based on their workshop presentations, at the Department's Set Theory Seminar.
Notes May be repeated to a maximum of six credits.
Prerequisites MAT 751

MAT 783 - Topics in Topology
Credits 3
Notes May be repeated for credit with the consent of the mathematics department. Except under special circumstances, total credits limited to six credits.
Prerequisites Consent of instructor.

MAT 789 - Topics in Advanced Mathematics
Credits 3
Graduate-level course in some field of mathematics, at advanced level, depending upon the current interest of the staff and the students.

Notes May be repeated to a maximum of six credits.

MAT 790 - Independent Study
Credits 1 – 3
Library work and reports on topics of mathematical interest.
Notes May be repeated for credit with the consent of the mathematics department. Except under special circumstances, total credits will be limited to six.

MAT 791 - Thesis
Credits 1 – 6
Notes May be repeated but only six credits will be applied to the student's program.
Grading S/F grading only.

MAT 792 - Research Seminar
Credits 1
Oral presentation of assigned articles.
Notes May be repeated to a maximum of four credits.

MAT 793 - Teaching Concentration Professional Paper Research
Credits 1 – 3
Individual research towards an applied professional paper under the direction of a faculty member.
Notes May be repeated any number of times, but no more than three credits will count towards degree requirements.
Grading S/F grading only.
Prerequisites Consent of instructor.

MAT 799 - Dissertation
Credits 3-6
Research analysis and writing toward completion of dissertation and subsequent defense. A minimum of 18 dissertation credits is required for a degree program. Dissertation may be repeated but only a maximum of 36 credits may be used in students degree program.
Grading S/F grading only
Prerequisites Successful completion of qualifying examination and approval by department.

Notes May be repeated but only six credits will be applied to the student's program.

STA 750 - Time Series Analysis
Credits 3
Topics include ARMA and ARIMA processes; autocorrelation and partial autocorrelation functions;
spectral density and periodogram; Yule-Walker equations; model fitting, forecasting and diagnostics; state-space models and the Kalman filter; multivariate time series; use of statistical software.

Prerequisites STA 667 or consent of instructor.

STA 663 - Applied Statistics for Engineers
Credits 3
Elementary probability, commonly used discrete and continuous probability distributions, estimation and hypothesis testing, categorical data testing, regression, model building, analysis of variance, product and system reliability and engineering applications, and quality control.

Notes This course is crosslisted with STAT 463. Credit at the 600-level requires additional work. The 600-level MAT and STA courses that are normally available for graduate credit are those numbered 650 or higher; the exceptions are MAT 680, which may be counted for graduate credit in an education degree program, and STA 691, STA 693, and STA 695, which may be counted for graduate credit in a biological sciences program.

STA 667 - Introduction to Mathematical Statistics
Credits 3
Introduction to statistical inference, distributions of random variables, common discrete and continuous probability models, transformations limiting distributions, sufficiency, completeness, unbiasedness, the information inequality, unbiased estimation, the methods of moments, maximum likelihood estimation, Bayesian estimation, confidence intervals, hypothesis testing, uniformly most powerful tests, likelihood ratio tests and related procedures, linear models, and non-parametric models.

Notes This course is crosslisted with STAT 467. Credit at the 600-level requires additional work. The 600-level MAT and STA courses that are normally available for graduate credit are those numbered 650 or higher; the exceptions are MAT 680, which may be counted for graduate credit in an education degree program, and STA 691, STA 693, and STA 695, which may be counted for graduate credit in a biological sciences program.

STA 669 - Environmental Statistics I: Univariate Methods
Credits 3
Principles of environmental sampling, testing for outliers, tests for normality, transformations for normality, sample size determinations, analysis of censored data, estimation of background contaminations, tolerance and confidence limits, calibration problem, quality control charts for data quality assessment of environmental data, statistical issues in environmental remediation, and probability of hot spot detection. Usage of statistical software packages.

Notes This course is crosslisted with STAT 469. Credit at the 600-level requires additional work. The 600-level MAT and STA courses that are normally available for graduate credit are those numbered 650 or higher; the exceptions are MAT 680, which may be counted for graduate credit in an education degree program, and STA 691, STA 693, and STA 695, which may be counted for graduate credit in a biological sciences program.

STA 689 - Advanced Statistics Topics
Credits 3
Graduate course in advanced topics in statistics, depending upon the interest of faculty and students.

Notes This course is crosslisted with STAT 489. Credit at the 600-level requires additional work. The 600-level MAT and STA courses that are normally available for graduate credit are those numbered 650 or higher; the exceptions are MAT 680, which may be counted for graduate credit in an education degree program, and STA 691, STA 693, and STA 695, which may be counted for graduate credit in a biological sciences program.

STA 690 - Independent Study
Credits 1-3
This course, when taught by a member of the graduate faculty, may be applied to a graduate program. For listings and a course description of this 600-level course, please consult the current Undergraduate Catalog under the corresponding 400 number.

Notes The 600-level MAT and STA courses that are normally available for graduate credit are those numbered 650 or higher; the exceptions are MAT 680, which may be counted for graduate credit in an education degree program, and STA 691, STA 693, and STA 695, which may be counted for graduate credit in a biological sciences program. This course offered by another department may also be taken for graduate credit.
STA 691 - Statistics for Scientists I
Credits 3
Frequency distributions, descriptive statistics, elementary probability, Bernoulli, binomial, and normal distributions; statistical sampling, estimation, and hypothesis testing.

Notes
This course is crosslisted with STAT 491.
Credit at the 600-level requires additional work. The 600-level MAT and STA courses that are normally available for graduate credit are those numbered 650 or higher; the exceptions are MAT 680, which may be counted for graduate credit in an education degree program, and STA 691, STA 693, and STA 695, which may be counted for graduate credit in a biological sciences program. This course offered by another department may also be taken for graduate credit.

STA 692 - Statistics for Scientists II
Credits 3
Chi-square tests for goodness-of-fit and independence, simple and multiple linear regression, designing an experiment (analysis of variance), multiple comparisons.

Notes
This course is crosslisted with STAT 492.
Credit at the 600-level requires additional work. The 600-level MAT and STA courses that are normally available for graduate credit are those numbered 650 or higher; the exceptions are MAT 680, which may be counted for graduate credit in an education degree program, and STA 691, STA 693, and STA 695, which may be counted for graduate credit in a biological sciences program. This course offered by another department may also be taken for graduate credit.

STA 693 - Applied Regression Analysis
Credits 3
Line fitting; multiple linear and curvilinear regression models; variable selection techniques and examination of residuals, estimation, testing, and prediction; simple, multiple, and partial correlation.

Notes
This course is crosslisted with STAT 493.
Credit at the 600-level requires additional work. The 600-level MAT and STA courses that are normally available for graduate credit are those numbered 650 or higher; the exceptions are MAT 680, which may be counted for graduate credit in an education degree program, and STA 691, STA 693, and STA 695, which may be counted for graduate credit in a biological sciences program. This course offered by another department may also be taken for graduate credit.

STA 695 - Nonparametric Statistics
Credits 3
Survey of nonparametric procedures with emphasis on application; binomial, Mann-Whitney, Wilcoxon, Kruskal-Wallis, Friedman, Kolmogorov-Smirnov, and chi-square tests; measures of association; regression. Comparisons with parametric techniques.

Notes
This course is crosslisted with STAT 495.
Credit at the 600-level requires additional work. The 600-level MAT and STA courses that are normally available for graduate credit are those numbered 650 or higher; the exceptions are MAT 680, which may be counted for graduate credit in an education degree program, and STA 691, STA 693, and STA 695, which may be counted for graduate credit in a biological sciences program. This course offered by another department may also be taken for graduate credit.

STA 713 - Experimental Design
Credits 3
Fundamental principles of analysis of variance; one-way, two-way, and higher order designs; nested designs; randomized blocks; split plot designs; Latin squares; multiple comparisons; analysis of covariance.

Prerequisites
MATH 181 and one of the following: STAT 411, STA 663 and STA 693.

STA 715 - Multivariate Statistical Methods
Credits 3
Multivariate techniques with emphasis on application. Topics include multivariate analysis of variance, discriminant analysis, canonical correlation and independence, principal component analysis, factor analysis, cluster analysis and analysis of repeated measurements.

Prerequisites
MATH 181, MATH 463 and one of the following: STAT 411, STA 663, STA 691.

STA 717 - Environmental Statistics
Credits 3
Testing for multivariate normality, data dependent transformations for multivariate normality, tests for outliers for multivariate data, multivariate control charts, exploratory data analysis of multivariate data
using principal components, cluster analysis, factor analysis, and multivariate calibration problems.

Prerequisites MATH 181 and one of the following: STAT 411, STA 663, STA 691.

STA 731 - Probability Theory and Its Applications
Credits 3
Topics include: set theory, limits of sets, probability space, random variables, measurability, independence, expectation, probability inequalities, convergence, laws of large numbers, central limit theorem, moment generating functions, characteristic functions, large deviation theory, martingale theory, random walk.
Prerequisites MAT 657

STA 751 - Spatial Statistics
Credits 3
Stochastic process, first and second order stationarity, intrinsic hypothesis, models of spatial dependence, different forms of Kriging — Ordinary Kriging, Universal Kriging, Probability Kriging, bicubic splines, conditional simulation.
Prerequisites STA 667 or consent of instructor.

STA 753 - Bayesian Data Analysis
Credits 3
This course will present methods for statistical modeling and data analysis from a Bayesian perspective. Topics include: Bayes' Theorem, prior and posterior distributions, computational algorithms for posterior simulation, statistical software and programming, as well as model formulation and diagnostics for linear, generalized linear, and hierarchical models.
Prerequisites STA 667 or equivalent, or consent of instructor.

STA 755 - Stochastic Modeling I
Credits 3
Probability theory, Markov chains in discrete and continuous time, the Poisson process, renewal theory, queueing theory, reliability theory, martingales, stationary processes, statistical inference for stochastic processes, and simulation techniques.
Prerequisites STA 667 or consent of instructor.

STA 756 - Stochastic Modeling II
Credits 3
Probability theory, Markov chains in discrete and continuous time, the Poisson process, renewal theory, queueing theory, reliability theory, martingales, stationary processes, statistical inference for stochastic process, and simulation techniques.
Prerequisites STA 755

STA 761 - Regression Analysis I
Credits 3
Fitting a straight line, matrix theory, examining residuals, selecting the "best" fit, multiple regression, non-linear regressions, multivariate normal, estimation, classification, principal components, canonical correlation, distribution of characteristic roots.
Prerequisites STA 667 and MAT 663, or equivalent.

STA 762 - Regression Analysis II
Credits 3
Fitting a straight line, matrix theory, examining residuals, selecting the “best” fit, multiple regression, non-linear regressions, multivariate normal, estimation, classification, variance-covariance matrix, testing sets of variates, principal components, canonical correlation, distribution of characteristic roots.
Prerequisites STA 667 and MAT 663 or equivalent.

STA 763 - Analysis of Variance I
Credits 3
Special topics in matrix theory; noncentral chi-square, F, and t; the multivariate normal distribution; Cochran's theorem; point and interval estimation; one-, two-, three-, higher-way layouts; Latin squares, incomplete blocks and nested designs, analysis of covariance; random effects models; mixed models; randomization models.
Prerequisites STA 667 and MAT 663 or equivalent.

STA 764 - Analysis of Variance II
Credits 3
Special topics in matrix theory; noncentral chi-square, F, and t; the multivariate normal distribution; Cochran's theorem; point and interval estimation; one-, two-, three-, higher-way layouts; Latin squares, incomplete blocks and nested designs, analysis of covariance; random effects models; mixed models; randomization models.
Prerequisites STA 667 and MAT 663 or equivalent.
STA 765 - Statistical Decision Theory
Credits 3
Introduction to decision theory, decision rules, loss functions, risk functions, decision principles, utility theory, prior information and subjective probability, noninformative priors, the posterior distribution, conjugate families, predictive distribution, Bayesian estimators, generalized Bayes estimators, credible regions, hypothesis testing, admissibility of Bayes rules, robustness of Bayes rules, minimax analysis, invariance, Bayesian sequential analysis.
Prerequisites STA 667 or consent of instructor.

STA 767 - Mathematical Statistics I
Credits 3
Basic probability theory, conditional probability, independence, random variables, probability distribution functions, distribution functions, transformations, function of random variables, expectations, moment generating functions, discrete and continuous distributions, exponential family, joint distribution, marginal distribution, modes of convergence, limiting distribution, random sample, sampling distribution, principle of data reduction.
Prerequisites STA 667 or consent of instructor.

STA 768 - Mathematical Statistics II
Credits 3
Random sample, sampling theory, point estimation, sufficiency, likelihood, method of moment, maximum likelihood estimator, Bayes estimator, unbiasedness, optimality, decision theory, hypothesis testing, likelihood ratio tests, Bayes test, most powerful test, set estimation, evaluating interval estimators, sequential estimation, asymptotics, robustness, linear models.
Prerequisites STA 767

STA 789 - Topics in Advanced Statistics
Credits 3
Graduate-level course in some field of statistics, depending upon the current interest of the faculty and the students.
Notes May be repeated to a maximum of six credits.

STA 790 - Independent Study
Credits 1 – 3
Library research and reports on topics of statistical interest.

Notes May be repeated to a maximum of six credits with consent of the department.

STA 791 - Thesis
Credits 3 – 6
Notes May be repeated but only six credits applied to the student's program.
Grading S/F grading only.

STA 792 - Research Seminar
Credits 1
Oral presentation of assigned articles.
Notes May be repeated to a maximum of four credits.

STA 793 - Techniques of Statistical Consulting
Credits 1 – 3
Seminar series and practicum covering technical and nontechnical aspects of statistical consulting, including skills for effective communication with clients, report writing, issues in sampling and design of experiments, and other statistical tools commonly used in a consulting setting.
Notes May be repeated to a maximum of six credits.

STA 799 - Dissertation
Credits 3-6
Research analysis and writing toward completion of dissertation and subsequent defense. A minimum of 24 dissertation credits is required for the degree program. Dissertation may be repeated but only a maximum of 36 credits may be used in students degree program.
Prerequisites Successful completion of qualifying examination and approval by department.
Physics & Astronomy

The Physics Department offers M.S. and Ph.D. degrees in physics, with concentrations in three research areas: laser physics, high pressure physics (in collaboration with LLNL and LANL), and condensed matter physics. The Physics Department also offers M.S. and Ph.D. degrees in Astronomy. The astronomers make use of space telescopes such as the Hubble Space Telescope, Swift, Chandra Xray Observatory and XMM-Newton Observatory, etc. to conduct research. The department’s experimental research programs are supported by fully equipped laboratories and mechanical, electronic and glass shops. The department is well equipped with state-of-the-art computing facilities, which allow for performing virtually any modeling and computer simulation.

Stephen Lepp, Ph.D., Chair
Victor Kwong, Ph.D., Graduate Coordinator

Physics and Astronomy Faculty

Chair

Lepp, Stephen - Full Graduate Faculty
Professor; B.S., University of Minnesota; M.A., Ph.D., University of Colorado, Boulder. Rebel since 1991.

Graduate Coordinator

Kwong, Victor H. - Full Graduate Faculty
Professor; B.S., Queen's University; M.S., University of Windsor; Ph.D., University of Toronto. Rebel since 1984.

Graduate Faculty

Chen, Changfeng - Full Graduate Faculty
Professor; B.S., Ph.D., Peking University. Rebel since 1990.

Cornelius, Andrew - Full Graduate Faculty
Professor; B.S., Drake University; Ph.D., Washington University. Rebel since 1999.

Farley, John W. - Full Graduate Faculty
Professor; B.A., Harvard College; M.A., Ph.D., Columbia University. Rebel since 1987.

Kumar, Ravhi
Associate Research Professor; Ph.D., Anna University, Chennai.

Lepp, Stephen H. - Full Graduate Faculty
Professor; B.S., University of Minnesota; M.A., Ph.D., University of Colorado, Boulder. Rebel since 1991.

Pang, Tao - Full Graduate Faculty
Professor; B.S., Fudan University; Ph.D., University of Minnesota. Rebel since 1991.

Pravica, Michael - Full Graduate Faculty
Associate Professor; B.S., Cal Tech; A.M., Ph.D., Harvard University. Rebel since 2003.

Proga, Daniel - Full Graduate Faculty
Associate Professor; M.S., Nicolaus Copernicus University; Ph.D. Nicolaus Copernicus Astronomical Center. Rebel since 2005.
Doctor of Philosophy - Astronomy

Plan Description

The purpose of the Astronomy M.S. and Ph.D. degrees are to prepare students for a career in Astronomy or Astrophysics Research or in education at the university level. The program achieves this with a custom program for each student set up by their advisor and their advising committee. In the case of the Ph.D. the research must be original research conducted independently by the student.

For more information about your program, including your graduate program handbook and learning outcomes please visit the Degree Directory.

Plan Admission Requirements

Applications available on the UNLV Graduate College website.

1. Applicants must have an undergraduate degree or a Masters degree in Physics, Astronomy or related area.
2. Applicants must have a minimum GPA of 2.75 for all undergraduate work or a minimum 3.00 GPA for the last two years of undergraduate work.
3. Applicants seeking direct admission to the doctoral program without a previously earned Master of Science degree must have a score in the 65th percentile or above on the Advanced Physics portion of the GRE before admission and have a minimum GPA of 3.00 for all undergraduate work or an overall 3.25 GPA for the last two years of undergraduate work.
4. Applicants with a Master's degree must have an overall 3.00 GPA in their Master’s program and at least 15 credit hours of graduate-level course work in physics or astronomy with a grade of B or better. A student entering with a Master's degree will be required to complete at least 30 additional credits, including dissertation credits, beyond the Masters.

Rhee, George - Full Graduate Faculty
Associate Professor; B.A., Cambridge University; M.Sc., Leiden University; M.A., Cambridge University; Ph.D., Leiden University. Rebel since 1993.

Selser, James C. - Full Graduate Faculty
Professor; B.S., U.S. Air Force Academy; M.S., Ph.D., University of California, Davis. Rebel since 1981.

Shelton, David P. - Full Graduate Faculty
Professor; B.A., M.S., Ph.D., University of Manitoba. Rebel since 1988.

Zhang, Bing - Full Graduate Faculty
Professor; B.S., M.S., Ph.D., Peking University. Rebel since 2004.

Zhao, Yusheng - Full Graduate Faculty
Professor; B.S., M.S., Peking University; Ph.D., University of California, Berkeley. Rebel since 2010.

Zygelman, Bernard - Full Graduate Faculty
Professor; B.S., Ph.D., City College of New York. Rebel since 1990.

Professor Emeritus

Cloud, Stan
Emeritus Professor; B.S. Stanford University; M.S., Ph.D., Duke University. UNLV Emeritus 1980-2005.

Pyper-Smith, Diane - Full Graduate Faculty
Associate Professor; A.B., University of California, Berkeley; Ph.D., University of California, Santa Cruz.

Weistrop, Donna E.
Emeritus Professor; B.A., Wellesley College; Ph.D., California Institute of Technology. UNLV Emeritus 1990-2005.

Zane, Len
Emeritus Professor; B.S., City College of New York; Ph.D. Duke University. UNLV Emeritus 1973-2011.
All domestic and international applicants must review and follow the Graduate College Admission and Registration Requirements.

Students are accepted into a degree program as described in the Graduate Catalog. The faculty and corresponding sub-disciplines and sub-plans within the described programs are subject to change at any time.

Plan Requirements

See Subplan Requirements below.

Subplan 1 Requirements: Post-Bachelor's Track

Total Credits Required: 60

Course Requirements

Required Courses – Credits: 9

AST 713 - Astrophysics I
AST 714 - Astrophysics II
PHYS 700 - Mathematical Physics I

Theory Course – Credits: 3

Complete one of the following courses:

PHYS 702 - Classical Mechanics I
PHYS 711 - Electromagnetic Theory I
PHYS 721 - Quantum Theory I

Astronomy Courses – Credits: 9

Complete three of the following courses:

AST 710 - Observational Astronomy Techniques
AST 721 - Astrophysics of Gaseous Nebulae and Active Galactic Nuclei
AST 725 - High Energy Astrophysics
AST 727 - Cosmology
AST 731 - Stellar Atmospheres: Theory, Observation, and Analysis
AST 747 - Interstellar Medium
PHYS 771 - Advanced Topics in Experimental and Theoretical Physics

Graduate Seminar Course – Credits: 6

Complete 6 credits of the following course, including three acceptable presentations.

PHYS 796 - Graduate Seminar

Elective Courses – Credits: 15

Complete 15 credits of 600- or 700-level AST or PHYS courses, or other advisor-approved courses.

Dissertation – Credits: 18

PHYS 799 - Doctoral Dissertation

Degree Requirements

1. The student must complete a minimum of 60 credits.
2. A minimum grade of B- is required in each course. An overall GPA of 3.00 or better is required in all course work which is part of the degree program.
3. Satisfactory performance on an astronomy qualifying examination on graduate astronomy knowledge. This requirement must be fulfilled by the second year in the program. Students who fail to pass the exam within the specified timeline will be placed on academic probation and will be allowed one retake of the exam. Failure to pass the retake or meet the requirements of academic probation will result in separation.
4. A dissertation of high quality consisting of significant original research.
5. Satisfactory performance on a final examination which will consist of an oral defense of the dissertation.

Graduation Requirements

See Plan Graduation Requirements below.

Subplan 2 Requirements: Post-Master's Track

Total Credits Required: 30

Course Requirements

Required Courses – Credits: 0-9

Complete 0-9 credits from the following list of courses:
AST 713 - Astrophysics I
AST 714 - Astrophysics II
PHYS 700 - Mathematical Physics I

Theory Course – Credits: 0-3

Complete 0-3 credits from the following list of courses:

PHYS 702 - Classical Mechanics I
PHYS 711 - Electromagnetic Theory I
PHYS 721 - Quantum Theory I

Astronomy Courses – Credits: 0-9

Complete 0-9 credits from the following list of courses:

AST 710 - Observational Astronomy Techniques
AST 721 - Astrophysics of Gaseous Nebulae and Active Galactic Nuclei
AST 725 - High Energy Astrophysics
AST 727 - Cosmology
AST 731 - Stellar Atmospheres: Theory, Observation, and Analysis
AST 747 - Interstellar Medium
PHYS 771 - Advanced Topics in Experimental and Theoretical Physics

Seminar Course – Credits: 0-6

Complete 0-6 credits of the following, including three acceptable presentations.

PHYS 796 - Graduate Seminar

Dissertation – Credits: 18

PHYS 799 - Doctoral Dissertation

Degree Requirements

1. Students must take an advisor approved combination of the coursework listed above, completing a minimum of 30 credits. Additional credits may be required to address student deficiencies or build specialized expertise.

2. The total number of Required, Theory, Astronomy, and Seminar courses will be determined in consultation with the student's advisor.

3. A minimum grade of B- is required in each course. An overall GPA of 3.00 or better is required in all coursework which is part of the degree program.

4. Satisfactory performance on an astronomy qualifying examination on graduate astronomy knowledge. This requirement must be fulfilled by the second year in the program. Students who fail to pass the exam within the specified timeline will be placed on academic probation and will be allowed one retake of the exam. Failure to pass the retake or meet the requirements of academic probation will result in separation.

5. A dissertation of high quality consisting of significant original research.

Graduation Requirements

See Plan Graduation Requirements below.

Plan Graduation Requirements

1. The student must submit all required forms to the Graduate College and then apply for graduation up to two semesters prior to completing his/her degree requirements.

2. The student must pass a qualifying exam and submit and successfully defend his/her dissertation by the posted deadline. The defense must be advertised and is open to the public.

3. The student must submit his/her approved, properly formatted hard-copy dissertation to the Graduate College, and submit the approved electronic version to ProQuest by the posted deadline.
Doctor of Philosophy - Physics

Plan Description

The purpose of the Physics M.S. and Ph.D. degrees are to prepare students for a career in Physics Research or in education at the university level. The program achieves this with a custom program for each student set up by their advisor and their advising committee. In the case of Ph.D. the students will be able to conduct these steps independently.

For more information about your program, including your graduate program handbook and learning outcomes, please visit the Degree Directory.

Plan Admission Requirements

Applications available on the UNLV Graduate College website.

1. Applicants seeking direct admission to the doctoral program without a previously earned Master of Science degree must have a score in the 65th percentile or above on the Advanced Physics portion of the GRE before admission. Applicants with a bachelor's degree in physics must have a minimum GPA of 3.00 for all undergraduate work or a 3.25 GPA for the last two years of undergraduate work, and a minimum of 18 credits of upper-division physics.

2. Applicants with a master's degree in physics must have at least 15 credit hours of graduate-level course work in physics with a grade of B or better and a 3.25 GPA in the master's program.

3. All domestic and international applicants must review and follow the Graduate College Admission and Registration Requirements.

Students are accepted into a degree program as described in the Graduate Catalog. The faculty and corresponding sub-disciplines and sub-plans within the described programs are subject to change at any time.

Plan Requirements

See Subplan Requirements below.

Subplan 1 Requirements: Post-Bachelor's Track

Total Credits Required: 60

Course Requirements

Required Courses – Credits: 18

PHYS 700 - Mathematical Physics I
PHYS 711 - Electromagnetic Theory I
PHYS 712 - Electromagnetic Theory II
PHYS 721 - Quantum Theory I
PHYS 722 - Quantum Theory II
PHYS 731 - Statistical Physics I

Elective Courses – Credits: 18

Complete 18 credits of 600- or 700-level AST or PHYS courses, or other advisor-approved courses.

Graduate Seminar Course – Credits: 6

Complete 6 credits of the following, including three acceptable presentations.

PHYS 796 - Graduate Seminar

Dissertation – Credits: 18

PHYS 799 - Doctoral Dissertation

Degree Requirements

1. Students must complete a minimum of 60 credits.

2. A minimum grade of B- is required in each course. An overall GPA of 3.00 or better is required on all course work that is part of the degree program.

3. In consultation with his/her advisor, a student will organize a thesis committee of at least three departmental members. In addition, a fourth member from outside the department, known as the Graduate College Representative, must be appointed. An additional committee member may be added at the student and department's discretion.
Please see Graduate College policy for committee appointment guidelines.

4. Each student's advisory committee will carry out an annual review of the student's progress.

5. Course work taken outside the Physics & Astronomy Department must have departmental approval.

6. Satisfactory performance on a written qualifying examination on advanced undergraduate physics must be fulfilled during the first two years in the graduate program. Students who fail to pass the exam within the specified timeline will be placed on academic probation and will be allowed one retake of the exam. Failure to pass the retake or meet the requirements of academic probation will result in separation.

7. A dissertation of high quality. The doctoral dissertation reports the results of significant original research, performed independently by the student, written in lucid scientific prose.

8. Satisfactory performance on a final examination that will consist of an oral defense of the dissertation.

Graduation Requirements

See Plan Graduation Requirements below.

Subplan 2 Requirements: Post-Master's Track

Total Credits Required: 30

Course Requirements

Required Courses – Credits: 6-18

Complete 6-18 credits from the following list of courses:

PHYS 700 - Mathematical Physics I
PHYS 711 - Electromagnetic Theory I
PHYS 712 - Electromagnetic Theory II
PHYS 721 - Quantum Theory I
PHYS 722 - Quantum Theory II
PHYS 731 - Statistical Physics I

Graduate Seminar Course – Credits: 0-6

Complete 0-6 credits of the following, including three acceptable presentations.

PHYS 796 - Graduate Seminar

Dissertation – Credits: 18

PHYS 799 - Doctoral Dissertation

Degree Requirements

1. Students must take an advisor approved combination of the coursework listed above, completing a minimum of 30 credits. Additional credits may be required to address student deficiencies or build specialized expertise.

2. The total number of Required Courses and Graduate Seminar Courses will be determined in consultation with the student's advisor.

3. A minimum grade of B- is required in each course. An overall GPA of 3.00 or better is required on all course work that is part of the degree program.

4. In consultation with his/her advisor, a student will organize a thesis committee of at least three departmental members. In addition, a fourth member from outside the department, known as the Graduate College Representative, must be appointed. An additional committee member may be added at the student and department's discretion. Please see Graduate College policy for committee appointment guidelines.

5. Each student's advisory committee will carry out an annual review of the student's progress.

6. Course work taken outside the Physics & Astronomy Department must have departmental approval.

7. Satisfactory performance on a written qualifying examination on advanced undergraduate physics must be fulfilled during the first two years in the graduate program. Students who fail to pass the exam within the specified timeline will be placed on academic probation and will be allowed one retake of the exam. Failure to pass the
retake or meet the requirements of academic probation will result in separation.

8. A dissertation of high quality. The doctoral dissertation reports the results of significant original research, performed independently by the student, written in lucid scientific prose.

9. Satisfactory performance on a final examination that will consist of an oral defense of the dissertation.

Graduation Requirements

See Plan Graduation Requirements below.

Plan Graduation Requirements

1. The student must submit all required forms to the Graduate College and then apply for graduation up to two semesters prior to completing his/her degree requirements.

2. The student must submit and successfully defend his/her dissertation by the posted deadline. The defense must be advertised and open to the public.

3. The student must submit his/her approved, properly formatted hard-copy dissertation to the Graduate College, and submit the approved electronic version to ProQuest by the posted deadline.

Master of Science - Astronomy

Plan Description

The purpose of the Astronomy M.S. and Ph.D. degrees are to prepare students for a career in Astronomy or Astrophysics Research or in education at the university level. The program achieves this with a custom program for each student set up by their advisor and their advising committee. At the M.S. level we have two options. A coursework M.S., wherein students take classes at the graduate level in Astronomy and pass an exam. We also offer a thesis option where students will learn to formulate, conduct and report on research.

For more information about your program, including your graduate program handbook and learning outcomes please visit the Degree Directory.

Plan Admission Requirements

Applications available on the UNLV Graduate College website.

1. Applicants must have an undergraduate degree in Physics, Astronomy or other related area.

2. Applicants must have a minimum grade point average (GPA) of 2.75 for all undergraduate work or a minimum 3.00 GPA for the last two years of undergraduate work.

3. Applicants must have completed 18 semester credits of upper-division physics.

4. All domestic and international applicants must review and follow the Graduate College Admission and Registration Requirements.

Students are accepted into a degree program as described in the Graduate Catalog. The faculty and corresponding sub-disciplines and sub-plans within the described programs are subject to change at any time.

Plan Requirements
See Subplan Requirements below.

Subplan 1 Requirements: Thesis Track

Total Credits Required: 30

Course Requirements

Required Courses – Credits: 24

Complete 24 credits of 600- or 700-level AST or PHYS courses, or other advisor-approved courses.

Thesis – Credits: 6

PHYS 797 - Thesis

Degree Requirements

1. Complete a minimum of 30 graduate credits.
2. Complete a minimum of 15 credits (excluding thesis) in 700-level astronomy or physics courses.
3. A GPA of 3.00 or better is required in all course work which is part of the degree program.
4. In consultation with his/her advisor, a student will organize a thesis committee of at least three departmental members. In addition, a fourth member from outside the department, known as the Graduate College Representative, must be appointed. An additional committee member may be added at the student and department's discretion. Please see Graduate College policy for committee appointment guidelines.

Graduation Requirements

1. The student must submit all required forms to the Graduate College and then apply for graduation up to two semesters prior to completing his/her degree requirements.
2. The student must successfully complete and defend a thesis by the posted deadline. The defense must be advertised and is open to the public.
3. Student must submit his/her approved, properly formatted hard-copy thesis to the Graduate College, and submit the approved electronic version to ProQuest by the posted deadline.

Subplan 2 Requirements: Non-Thesis Track

Total Credits Required: 30

Course Requirements

Required Courses – Credits: 6

AST 713 - Astrophysics I
AST 714 - Astrophysics II

Core Courses – Credits: 6

Complete two of the following courses:

AST 710 - Observational Astronomy Techniques
AST 721 - Astrophysics of Gaseous Nebulae and Active Galactic Nuclei
AST 725 - High Energy Astrophysics
AST 727 - Cosmology
AST 747 - Interstellar Medium
PHYS 771 - Advanced Topics in Experimental and Theoretical Physics

Elective Courses – Credits: 18

Complete 18 credits of 600- or 700-level AST or PHYS courses, or other advisor-approved courses.

Degree Requirements

1. Complete a minimum of 30 graduate level credits in physics, astronomy, or related fields (excluding graduate seminar).
2. Complete at least 15 credits of 700-level astronomy or physics courses.
3. A GPA of 3.00 or better in all course work which is part of the degree program.
4. In consultation with his/her advisor, a student will organize an advisory committee of at least three departmental members. In addition, a fourth member from outside the department, known as the Graduate College Representative, must be appointed. An additional committee member may be added at the student and department's discretion. Please see Graduate College policy for committee appointment guidelines.
5. Satisfactory performance on an astronomy qualifying examination on graduate astronomy knowledge at the master's level.

Graduation Requirements

1. The student must submit all required forms to the Graduate College and then apply for graduation up to two semesters prior to completing his/her degree requirements.
2. The student must pass a qualifying examination.

Plan Graduation Requirements

Refer to your subplan for Graduation Requirements.

Master of Science - Physics

Plan Description

The purpose of the Physics M.S. and Ph.D. degrees are to prepare students for a career in Physics Research or in education at the university level. The program achieves this with a custom program for each student set up by their advisor and their advising committee. At the M.S. level students will learn to formulate, conduct and report on research.

For more information about your program including your graduate program handbook and learning outcomes please visit the Degree Directory.

Plan Admission Requirements

Applications available on the UNLV Graduate College website.

1. Applicants must have a minimum GPA of 2.75 for all undergraduate work or a 3.00 GPA for the last two years of undergraduate work.
2. The applicant must have completed 18 semester credits of upper-division undergraduate physics.
3. All domestic and international applicants must review and follow the Graduate College Admission and Registration Requirements.

Students are accepted into a degree program as described in the Graduate Catalog. The faculty and corresponding sub-disciplines and sub-plans within the described programs are subject to change at any time.

Plan Requirements

Total Credits Required: 30

Course Requirements

Required Courses – Credits: 24

Complete 24 credits of 600- or 700-level AST or PHYS courses, or other advisor-approved courses.
Thesis – Credits: 6

PHYS 797 - Thesis

Degree Requirements

1. A minimum of 30 graduate credits is required, including a minimum of 15 credits (excluding thesis) in 700-level courses.
2. A GPA of 3.00 or better is required in all course work which is part of the degree program.
3. In consultation with his/her advisor, a student will organize a thesis committee of at least three departmental members. In addition, a fourth member from outside the department, known as the Graduate College Representative, must be appointed. An additional committee member may be added at the student and department's discretion. Please see Graduate College policy for committee appointment guidelines.

Plan Graduation Requirements

1. The student must submit all required forms to the Graduate College and then apply for graduation up to two semesters prior to completing his/her degree requirements.
2. The student must successfully complete and defend a thesis by the posted deadline. The defense must be advertised and is open to the public.
3. Student must submit his/her approved, properly formatted hard-copy thesis to the Graduate College, and submit the approved electronic version to ProQuest by the posted deadline.

Physics and Astronomy Courses

AST 710 - Observational Astronomy Techniques
Credits 3
Techniques used in observational astronomy. Students plan and execute an observing program on a research grade telescope. Data reduction and analysis using standard professional software packages and procedures.
Prerequisites Graduate standing.

AST 714 - Astrophysics II
Credits 3
Laws of physics applied to astrophysical situations.
Notes Major topics include solar physics, element synthesis, stellar evolution, end states of stars.
Prerequisites Graduate standing.

AST 725 - High Energy Astrophysics
Credits 3

AST 721 - Astrophysics of Gaseous Nebulae and Active Galactic Nuclei
Credits 3
Theory and observations used to determine the physical conditions in gaseous nebulae (H II regions, planetary nebulae, supernova remnants, etc.) and active galactic nuclei. Formation of spectra in these regions and analysis to determine temperatures, density and chemical composition. Recent observational results also discussed.
Same as Previously known as PHYS 777
Prerequisites Graduate standing.

AST 723 - Astrophysical Fluids
Credits 3
Physics of fluids applied to astrophysical situations. Major topics include single-fluid theory, waves, shocks, fronts, magnetohydrodynamics, and plasma physics.

AST 725 - High Energy Astrophysics
Credits 3
Introduction of high energy astrophysics. Theory to understand high energy phenomena in the universe, including radiation mechanisms and various energy power sources (accretion, nuclear, spindown, magnetic). Objects include neutron stars, black holes, bursters. Brief introduction of neutrino, cosmic ray, and gravitational astrophysics.

AST 727 - Cosmology
Credits 3
Classical cosmology, the isotropic universe, gravitational lensing the age and distance scales, the early universe, observational cosmology, matter in the universe, galaxies and their evolution, active galaxies, galaxy formation and clustering, cosmic background fluctuations.

Same as Previously known as PHYS 777

Prerequisites Graduate standing.

AST 729 - Galaxies
Credits 3
Observation and theoretical basis for our current understanding of galactic astronomy. Major topics include Morphology of Galaxies, the Milky Way, equilibria of collisionless systems, spiral structure, and dark matter.

Prerequisites Graduate standing.

AST 731 - Stellar Atmospheres: Theory, Observation, and Analysis
Credits 3
Theoretical treatment of stellar atmospheric structure and radiative transfer, state-of-the-art astrophysical analysis techniques used to derive atmospheric parameters, our current observational understanding of stellar atmospheres, special topics in stellar atmospheres (pulsation, chromospheric activity, etc.), and relevance to galactic and extragalactic astronomy.

Prerequisites Graduate standing.

AST 747 - Interstellar Medium
Credits 3
Physics of the interstellar medium. Overall chemical, thermal and physical state of the gas in our galaxy. Astrochemistry, cosmic rays, radiative transfer, atomic and molecular physics, thermal equilibrium, and the overall dynamics of the galaxy.

Same as Previously known as PHYS 771

Prerequisites Graduate standing.

PHYS 604 - Computational Techniques in Physics
Credits 3
Application of numerical methods to simulation of physical systems, including topics in classical mechanics, electrostatics, quantum mechanics, scattering, nonlinear dynamics and chaos.

Notes This course is crosslisted with PHYS 404. Credit at the 600-level requires additional work.

PHYS 614 - Intermediate Laboratory II
Credits 3
Further experimental investigations of phenomena in classical and modern physics. Emphasis on problem solving, experimental technique, data analysis, and independent work. Students encouraged to alter or extend the experiments and engage in projects.

Notes This course is crosslisted with PHYS 414. Credit at the 600-level requires additional work.

PHYS 622 - Electricity and Magnetism
Credits 3
Electrostatics, magnetic fields, and electromagnetism. Maxwell’s equations, theory of metallic conduction, motion of charged particles, radiation.

Notes This course is crosslisted with PHYS 422. Credit at the 600-level requires additional work.

PHYS 624 - Mechanics
Credits 3

Notes This course is crosslisted with PHYS 424. Credit at the 600-level requires additional work.

PHYS 626 - Physics of Solids
Credits 3
Structure of crystalline solids. Mechanical, thermal, and electric properties of conducting and non-conducting solids.

Notes This course is crosslisted with PHYS 426. Credit at the 600-level requires additional work.

PHYS 631 - Nuclear and Elementary Particle Physics
Credits 3
Survey of basic nuclear concepts and structure. Interactions between nuclear radiations and matter,
nuclear reactions and decay, nuclear force, subatomic structure and models, symmetries and conservation laws.

Notes This course is crosslisted with PHYS 431. Credit at the 600-level requires additional work.

PHYS 641 - Mathematical Physics I
Credits 3
Application of selected mathematical techniques to problems in physics.

Notes This course is crosslisted with PHYS 441. Credit at the 600-level requires additional work.

PHYS 642 - Mathematical Physics II
Credits 3
Application of selected mathematical techniques to problems in physics.

Notes This course is crosslisted with PHYS 441. Credit at the 600-level requires additional work.

PHYS 644 - Thermodynamics
Credits 3
Fundamentals of thermodynamics, including equations of state, laws of thermodynamics, and entropy. Principles and methods of temperature measurement, calorimetry and heat transfer.

Notes This course is crosslisted with PHYS 467. Credit at the 600-level requires additional work.

PHYS 648 - Statistical Mechanics
Credits 3
Principles and applications of statistical mechanics. Quantum statistics of ideal gas and simple solids. Transport theory, irreversible processes and fluctuations.

Notes This course is crosslisted with PHYS 668. Credit at the 600-level requires additional work.

PHYS 649 - Quantum Mechanics I
Credits 3
Introduction to the Schroedinger Equation and the interpretation of its solutions, the uncertainty principles, one-dimensional problems, harmonic oscillator, angular momentum, the hydrogen atom.

Notes This course is crosslisted with PHYS 481. Credit at the 600-level requires additional work.

PHYS 650 - Quantum Mechanics II
Credits 3
Introduction to the matrix formulation of quantum mechanics, spin, coupling of angular momenta and applications. Time dependent perturbation theory and approximation methods and techniques discussed.

Notes This course is crosslisted with PHYS 482. Credit at the 600-level requires additional work.

PHYS 651 - Modern Scientific Instrumentation
Credits 3
Electronics for scientists, including circuit design and construction using analog and digital integrated circuits. Introduction to machining, glassblowing, and fabrication techniques.

Notes This course is crosslisted with PHYS 451. Credit at the 600-level requires additional work.

PHYS 652 - Modern Optics and Photonics
Credits 3
Laser principles and applications. Non-linear optics, image formation, optical transfer function, and Fourier optics. Introduction to quantum optics.

Notes This course is crosslisted with PHYS 462. Credit at the 600-level requires additional work.

PHYS 653 - Special Topics in Physics
Credits 3
Special topics in physics such as, but not limited to, relativity, plasma physics, hydrodynamics, and particle physics.

Notes This course is crosslisted with PHYS 483. Credit at the 600-level requires additional work.

PHYS 654 - Condensed Matter Physics
Credits 3

Notes This course is crosslisted with PHYS 485. Credit at the 600 level-requires additional work.
PHYS 700 - Mathematical Physics I
Credits 3
Reviews and introduces various specific mathematical functions and techniques basic to the study of physics.

PHYS 701 - Mathematical Physics II
Credits 3
Reviews and introduces various specific mathematical functions and techniques basic to the study of physics.

PHYS 702 - Classical Mechanics I
Credits 3
Newtonian mechanics from an advanced point of view. Variational principles. Lagrange's and Hamilton's equations, central forces, rigid body motion, canonical transformations, Hamilton-Jacobi theory, small oscillations.

PHYS 703 - Classical Mechanics II
Credits 3
Newtonian mechanics from an advanced point of view. Variational principles. Lagrange's and Hamilton's equations, central forces, rigid body motion, canonical transformations, Hamilton-Jacobi theory, small oscillations.

PHYS 705 - Advanced Optical Systems
Credits 3
Prerequisites PHYS 461 or equivalent; graduate standing or consent of instructor.

PHYS 707 - Condensed Matter Theory I
Credits 3
Prerequisites PHYS 482/682, PHYS 483/683 and graduate standing.

PHYS 708 - Condensed Matter Theory II
Credits 3
Prerequisites PHYS 707 and graduate standing.

PHYS 711 - Electromagnetic Theory I
Credits 3
Prerequisites PHYS 422/PHYS 622 and graduate standing.

PHYS 712 - Electromagnetic Theory II
Credits 3
Prerequisites PHYS 422/PHYS 622 and graduate standing.

PHYS 721 - Quantum Theory I
Credits 3
theory, Born approximation and other approximation methods. Dirac notation and an introduction to spin.

Prerequisites PHYS 482/PHYS 682 and graduate standing.

PHYS 722 - Quantum Theory II
Credits 3

Prerequisites PHYS 482/PHYS 682 and graduate standing.

PHYS 723 - Quantum Optics
Credits 3

Prerequisites PHYS 622 and PHYS 682/PHYS 721, or consent of instructor.

PHYS 724 - Laser Applications: Interaction with Matter
Credits 3

Prerequisites Graduate standing or consent of instructor.

PHYS 725 - Spectroscopy
Credits 3
Survey of spectroscopy, including absorption and emission spectroscopy, classical grating spectroscopy, laser spectroscopy, Raman spectroscopy, and Fourier transform spectroscopy. Intensities, sensitivity limits, and resolution. High-resolution and ultra-high-resolution spectroscopy. Photon correlation spectroscopy. Analysis of spectra.

Prerequisites PHYS 461/PHYS 661, PHYS 481/PHYS 681 and graduate standing.

PHYS 726 - Advanced Quantum Theory
Credits 3
The Dirac equation, hole theory, second quantization, Feynman diagrams, self-energy, vacuum polarization, renormalization, QED effects in high-Z atoms, path integral methods in field theory.

Prerequisites PHYS 722 and graduate standing.

PHYS 727 - Advanced Topics in Semiconductor Devices I
Credits 3
Topics of current interest in solid state electronic devices: physics of semiconductors, thermal and optical and electronic properties of semiconductors, bipolar junction devices, field effect devices, surface related effects, optoelectronic devices, semiconductor lasers. Applications and the design of circuits using these devices. Intended for electrical and electronic engineers, physicists, and qualified senior students in engineering and physics.

Prerequisites PHYS 411 and PHYS 683, or EEG 414 and EEG 420, and consent of instructor.

PHYS 728 - Applications of Group Theory in Quantum Mechanics
Credits 3
Abstract group theory, theory of group representations, and direct product theory. Relationship to quantum mechanics; applications to atomic, molecular and solid state physics. Time-reversal symmetry, continuous groups, and the symmetric group.

Prerequisites PHYS 482/PHYS 682 and graduate standing.

PHYS 731 - Statistical Physics I
Credits 3

Prerequisites PHYS 467, 468 and graduate standing.

PHYS 732 - Statistical Physics II
Credits 3
Quantum statistical mechanics, Fermi-Dirac and Bose- Einstein statistics. Phase transitions.
Fluctuations.

Prerequisites PHYS 731 and graduate standing.

PHYS 741 - Atomic and Molecular Theory
Credits 3
Hartree-Fock theory, many-body perturbation theory, relativistic effects, energy levels, oscillator strengths, bound-continuum processes, Born-Oppenheimer approximation for molecules, symmetries, selection rules.

Prerequisites PHYS 721 and graduate standing.

PHYS 771 - Advanced Topics in Experimental and Theoretical Physics
Credits 3

Notes May be repeated for credit in different fields to a maximum of 12 credits.

Prerequisites Depends on particular topic, consult instructor.

PHYS 777 - Advanced Special Problems
Credits 1 – 6
Special study of advanced topics not specifically covered in listed courses.

Notes May be repeated to a maximum of six credits.

Prerequisites Prior conference with instructor.

PHYS 781 - Thesis Research
Credits 1
Research leading to master's level program prospectus.

Notes May be repeated but only one credit can be applied to the student's program.

Grading S/F grading only.

Prerequisites Enrollment in the M.S. Program.

PHYS 782 - Dissertation Research
Credits 1
Supervised research prior to advancement to candidacy in the doctoral program.

Notes May be repeated but only two credits can be applied to the student's program. A maximum of one credit is allowed per semester.

Grading S/F grading only.

Prerequisites Enrollment in the doctoral program.

PHYS 796 - Graduate Seminar
Credits 1
Students required to give presentations on topics outside their Ph.D. work and to discuss the presentations. Presentations by graduate students given on a regularly scheduled basis, last about an hour, and given at the nonspecialist level.

Notes A total of three acceptable presentations in three different semesters during the six semesters of enrollment required. May be repeated to a maximum of six credits.

Prerequisites Graduate standing.

PHYS 797 - Thesis
Credits 3 – 6

Notes May be repeated but only six credits will be applied to the student's program.

Grading S/F grading only.

PHYS 799 - Doctoral Dissertation
Credits 3 – 6
Doctoral dissertation.

Notes May be repeated. A minimum of 18 credits required for the degree.

Prerequisites Qualifying exam and approval by department.

PHYS 796 - Graduate Seminar
Credits 1
Students required to give presentations on topics outside their Ph.D. work and to discuss the presentations. Presentations by graduate students given on a regularly scheduled basis, last about an hour, and given at the nonspecialist level.

Notes May be repeated but only two credits can be applied to the student's program. A maximum of one credit is allowed per semester.

Grading S/F grading only.

Prerequisites Enrollment in the doctoral program.

PHYS 796 - Graduate Seminar
Credits 1
Students required to give presentations on topics outside their Ph.D. work and to discuss the presentations. Presentations by graduate students given on a regularly scheduled basis, last about an hour, and given at the nonspecialist level.

Notes A total of three acceptable presentations in three different semesters during the six semesters of enrollment required. May be repeated to a maximum of six credits.

Prerequisites Graduate standing.

PHYS 797 - Thesis
Credits 3 – 6

Notes May be repeated but only six credits will be applied to the student's program.

Grading S/F grading only.

PHYS 799 - Doctoral Dissertation
Credits 3 – 6
Doctoral dissertation.

Notes May be repeated. A minimum of 18 credits required for the degree.

Prerequisites Qualifying exam and approval by department.
Water Resources Management

The Water Resources Management Program is a flexible, interdisciplinary course of study leading to an M.S. degree. It is a technically and scientifically based program that blends the physical aspects of the hydrologic sciences, in a broader sense, with policy and management issues in hydroscience. People with degrees in physical, biological, or natural sciences and engineering and those with degrees in the social sciences, management, environmental studies, or related disciplines are encouraged to apply to the program. Working together, the student and faculty advising committee will design specific courses of study or thesis topics such that all students will strengthen their understanding of hydrologic sciences and water management while also developing technical skills.

The Water Resources Management Graduate Program is housed in the College of Sciences and encourages multidisciplinary study and research with participating faculty at UNLV from the colleges of Sciences, Business, Urban Affairs, Engineering, and Liberal Arts and participating faculty at the Harry Reid Center for Environmental Studies (HRC) on the UNLV campus, the Desert Research Institute (DRI), and the University of Nevada, Reno (UNR). Adjunct participating faculty may also be with the U.S. Environmental Protection Agency (EPA), the U.S. Geological Survey (USGS), Department of Energy (DOE), Las Vegas Valley Water District (LVVWD), the Bureau of Reclamation (BOR) or other governmental or private agencies.

Michael Nicholl, Ph.D., Director, Graduate Coordinator

Water Resources Management Faculty

Director

Nicholl, Michael J.- Full Graduate Faculty
Associate Professor; B.S., Eastern Michigan University; M.S., Ph.D., University of Nevada, Reno. Rebel since 2004.

Graduate Coordinator

Papelis, Charalambos
Associate Research Professor; B.S., National Technical University, Athens, Greece; M.S., Ph.D., Stanford University. Rebel since 1994.

Graduate Faculty

Faculty participating in the Water Resources Management Graduate Program (WRM) are affiliated with several different colleges, departments, and centers of UNLV and the NSHE. Researchers from governmental or private agencies may also participate as adjunct faculty. A list of participating faculty can be found at the website of the WRM Graduate Program at http://sciences.unlv.edu/wrm.
Master of Science - Water Resources Management

Plan Description

The Water Resources Management (WRM) program in the College of Sciences at the University of Nevada, Las Vegas is a flexible, interdisciplinary course of study leading to a Master of Science degree. It is a technically and scientifically based program that blends the physical aspects of the hydrologic sciences with policy and management issues.

The WRM program is designed to encourage a multidisciplinary approach to learning. Students enter the program from a wide variety of undergraduate programs, then take classes and conduct research with faculty in the Colleges of: Sciences, Business, Urban Affairs, Engineering, and Liberal Arts at UNLV, plus the Boyd School of Law and the Desert Research Institute. Students in the WRM program also work with participating faculty from federal, state, and local government agencies.

For more information about your program including your graduate program handbook and learning outcomes please visit the Degree Directory.

Plan Admission Requirements

Applications available on the UNLV Graduate College website.

Applicants to the program must hold a B.S. or B.A. degrees in the physical, natural or social sciences, business, management, or a related field.

1. A minimum overall undergraduate grade point average of 3.00.
2. Submission of an online application.
3. Transcripts of all college-level course work.
4. Three letters of recommendation from individuals competent to comment on the applicant’s promise as a graduate student.
5. A letter of application stating the student’s interests and goals.

6. Satisfactory scores on the Graduate Record Exam. This requirement may be waived in the case of candidates with exceptional professional experience.

Items 3-5 should be uploaded as part of the online application.

All domestic and international applicants must review and follow the Graduate College Admission and Registration Requirements.

Refer to the Graduate College website for current deadlines.

Students are accepted into a degree program as described in the Graduate Catalog. The faculty and corresponding sub-disciplines and sub-plans within the described programs are subject to change at any time.

Plan Requirements

See Subplan Requirements below.

Subplan 1 Requirements: Thesis Track

Total Credits Required: 33

Course Requirements

Required Course – Credits: 3

Complete one of the following courses:

WRM 706 - Research Methods in Water Resources Management
GEOL 701 - Research Methods in Geoscience

Hydrologic Sciences Courses – Credits: 6

Complete 6 credits of advisor-approved GEOL or CEE courses.

Additional Science Course – Credits: 3

Complete 3 credits of advisor-approved science, mathematics or engineering (BIOL, CEE, CHEM, GEOL, MAT, ME, PHYS, STA) courses.

Administrative Courses – Credits: 9
Complete 9 credits of advisor-approved management, public administration, economics, law, or political science (ECO, ENV, HIST, LAW, MGT, MIS, PSC, PUA) courses.

Elective Courses – Credits: 6

Complete 6 credits of advisor-approved BIOL, CEE, CHEM, ECO, ENV, GEO, HIST, LAW, MAT, ME, MGT, MIS, PHYS, PSC, PUA, or STA courses.

Thesis – Credits: 6

WRM 798 - Thesis

Degree Requirements

1. Completion of a minimum of 33 credit hours with a minimum GPA of 3.00.
2. A minimum of 15 credit hours must be in 700-level courses.
3. Because of the interdisciplinary nature of the Water Resources Management Graduate Program, students are encouraged to select courses from different departments that would strengthen their background and help them achieve their research and educational goals.
4. In consultation with his/her advisor, a student will organize a thesis committee of at least three departmental members. In addition, a fourth member from outside the department, known as the Graduate College Representative, must be appointed. An additional committee member may be added at the student and department's discretion. Please see Graduate College policy for committee appointment guidelines.
5. Students must develop their course work program with the consent of the advisor and the student's advisory committee. Courses from different colleges and departments may be incorporated into the student's program of study. Students should consult the listings of individual departments.
6. There will be a final examination that will include a comprehensive oral examination.

Graduation Requirements

1. The student must submit all required forms to the Graduate College and then apply for graduation up to two semesters prior to completing his/her degree requirements.
2. The student must submit and successfully defend his/her thesis by the posted deadline. The defense must be advertised and is open to the public.
3. The student must submit his/her approved, properly formatted hard-copy thesis to the Graduate College, and submit the approved electronic version to ProQuest by the posted deadline.

Subplan 2 Requirements: Non-Thesis Track

Total Required Credits: 36

Course Requirements

Required Course – Credits: 3

Complete one of the following courses:

WRM 706 - Research Methods in Water Resources Management
GEOL 701 - Research Methods in Geoscience

Hydrologic Sciences Courses – Credits: 6

Complete 6 credits of advisor-approved GEOL or CEE courses.

Additional Science Courses – Credits: 6

Complete 6 credits of advisor-approved science, mathematics or engineering (BIOL, CEE, CHEM, GEOL, MAT, ME, PHYS, STA) courses.

Administrative Courses – Credits: 12

Complete 12 credits of advisor-approved management, public administration, economics, law, or political science (ECO, ENV, HIST, LAW, MGT, MIS, PSC, PUA) courses.

Elective Courses – Credits: 6

Complete 6 credits of advisor-approved BIOL, CEE, CHEM, ECO, ENV, GEO, HIST, LAW, MAT, ME, MGT, MIS, PHYS, PSC, PUA, or STA courses.
Professional Paper – Credits: 3

WRM 796 - Professional Paper in WRM

Degree Requirements

1. Completion of a minimum of 36 credit hours with a minimum GPA of 3.00.
2. A minimum of 15 credit hours must be in 700-level courses.
3. Because of the interdisciplinary nature of the Water Resources Management Graduate Program, students are encouraged to select courses from different departments that would strengthen their background and help them achieve their research and educational goals.
4. In consultation with his/her advisor, a student will organize a committee of at least three departmental members. In addition, a fourth member from outside the department, known as the Graduate College Representative, must be appointed. An additional committee member may be added at the student and department's discretion. Please see Graduate College policy for committee appointment guidelines.
5. Students must develop their course work program with the consent of the advisor and the student's advisory committee. Courses from different colleges and departments may be incorporated into the student's program of study. Students should consult the listings of individual departments.
6. There will be a final examination that will include a comprehensive oral examination.

Graduation Requirements

1. The student must submit all required forms to the Graduate College and then apply for graduation up to two semesters prior to completing his/her degree requirements.
2. The student must successfully complete and defend a professional paper.

Plan Graduation Requirements

Refer to your subplan for Graduation Requirements.

Water Resources Management Courses

WRM 706 - Research Methods in Water Resources Management
Credits 3
Discussion of the processes of scientific research and research design as applied to modern water resources management. Includes scientific approaches to field and laboratory research, research and professional ethics, writing, and public presentation. Model thesis prospectus and grant proposals prepared.
Prerequisites Graduate standing or consent of instructor.

WRM 790 - Special Topics in Water Resources Management
Credits 1 – 3
Topics selected and published in the class schedule.
Notes May be repeated to a maximum of nine credits.
Prerequisites Consent of instructor.

WRM 791 - Independent Study
Credits 1 – 3
Review of recent literature in a specialized area related to water resources.
Notes May be repeated to a maximum of four credits.
Prerequisites Consent of instructor.

WRM 796 - Professional Paper in WRM
Credits 1-6
Professional paper preparation, including review of literature or similar research effort.
Notes May be repeated to a maximum of three credits. Not permitted for students pursuing the M.S. Thesis option.
Prerequisites Consent of instructor.

WRM 798 - Thesis
Credits 1 – 3
Enrollment by consent of research director only.
Notes May be repeated for credit with cumulative maximum of six credits allowed toward degree program.
Grading S/F grading only.